广西师范大学学报(自然科学版) ›› 2026, Vol. 44 ›› Issue (2): 238-252.doi: 10.16088/j.issn.1001-6600.2025033001

• 生态环境科学研究 • 上一篇    下一篇

旱季喀斯特檵木克隆整合对叶片和根系养分的影响

何浩勇1,2,3, 刘宁1,2,3, 莫燕华1,2,3, 杨新亮1,2,3, 谢小丽1,2,3, 罗成杰1,2,3, 莫奕雯1,2,3, 张玉扬1,2,3, 马姜明1,2,3*   

  1. 1.珍稀濒危动植物生态与环境保护教育部重点实验室(广西师范大学),广西 桂林 541006;
    2.广西漓江流域景观资源保育与可持续利用重点实验室(广西师范大学),广西 桂林 541006;
    3.广西师范大学 可持续发展创新研究院,广西 桂林 541006
  • 收稿日期:2025-03-30 修回日期:2025-04-20 发布日期:2026-02-03
  • 通讯作者: 马姜明(1976—),男,江西永新人,广西师范大学教授,博士。E-mail: mjming03@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金区域创新发展联合基金重点支持项目(U21A2007);桂林市科技计划项目(20230102-6,20230102-7);广西高校中青年教师科研基础能力提升项目(2025KY0096)

Effects of Clonal Integration of Loropetalum chinenseon Leaf and Root Nutrients in Karst Dry Season

HE Haoyong1,2,3, LIU Ning1,2,3, MO Yanhua1,2,3, YANG Xinliang1,2,3, XIE Xiaoli1,2,3, LUO Chengjie1,2,3, MO Yiwen1,2,3, ZHANG Yuyang1,2,3, MA Jiangming1,2,3*   

  1. 1. Key Laboratory of Rare and Endangered Animal and Plant Ecology and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. Key Laboratory of Landscape Resource Conservation and SustainableUtilization in the Lijiang River Basin of Guangxi (Guangxi Normal University), Guilin Guangxi 541006, China;
    3. Institute forSustainable Development and Innovation, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2025-03-30 Revised:2025-04-20 Published:2026-02-03

摘要: 檵木Loropetalum chinense是漓江流域喀斯特植被恢复优势树种,基于其克隆生长特性,檵木能够很好地适应异质性生境。本研究基于空间代替时间方法,以漓江流域喀斯特石山生境旱季檵木群落不同演替阶段(灌木、乔灌和乔木阶段)的克隆植物檵木为研究对象,分析母株、子株和未克隆植株的叶片、根系和根际土壤碳(C)、氮(N)、磷(P)含量变化特征,并结合檵木养分和根际土壤理化性质,探讨旱季演替阶段变化及克隆整合对檵木叶片和根系养分的影响。结果表明:1)檵木叶片C、N、P和根系C、P含量随演替阶段变化显著提高。克隆整合作用对檵木叶片含水率,叶片C、N含量和根系C、P含量影响显著,其中灌木阶段未克隆植株根系C含量相较克隆母株和子株分别高5.83%和5.24%,乔木阶段分别高1.3%和0.5%;乔木阶段未克隆植株根系P含量相较母株和子株分别高120.86%和75.64%。 2)檵木叶片和根系养分分配差异显著,含水率及C、N、P含量均为叶片显著高于根系。群落演替和克隆整合对C、P养分分配影响显著,乔木阶段母株与子株较未克隆植株向叶片输送更多的C、P养分,而在灌木和乔灌阶段养分分配无显著差异。3)克隆整合与演替阶段变化影响下,灌木和乔木阶段植株与根际土壤的互作强度显著高于乔灌阶段,母株互作强度显著高于子株和未克隆植株。灌木阶段根际土壤pH、碱解氮(HN)、全磷(TP)和速效磷(AP)与檵木养分正相关、与pH为负相关;乔木阶段根际土壤有机碳(SOC)、全氮(TN)、HN、TP和AP与檵木养分正相关。本研究表明,檵木群落自然演替和克隆整合作用对檵木叶片和根系养分及根际土壤具有一定影响,对灌木和乔灌阶段檵木需要改善土壤pH及增加N、P养分的供给;而乔木阶段的养分循环受喀斯特地区高钙镁和高pH限制,需要改善土壤pH以帮助利用土壤养分。

关键词: 檵木, 克隆整合, 叶片养分, 根系养分, 喀斯特

Abstract: Loropetalum chinense is the dominant tree species for karst vegetation restoration in Lijiang River Basin. Based on its clonal growth characteristics, L. chinense can well adapt to heterogeneous habitats. To investigate the impacts of clonal integration on leaf and root nutrient contents in L. chinense, this study employed a space-for-time substitution approach, focusing on L. chinense in dry-season habitats across different successional stages (shrub, shrub-tree, and tree stages) in karst rocky mountainous areas of the Li River Basin. Analyzed variations in carbon (C), nitrogen (N), and phosphorus (P) contents in leaves, roots, and rhizosphere soil of mother ramets, daughter ramets, and non-clonal plants. The interactions between plant nutrient status, rhizosphere soil physicochemical properties, and their responses to successional stage changes and clonal integration during the dry season were further explored. The results demonstrated that: 1) Leaf C, N, P and root C, P contents of L. chinense increased significantly with successional progression. Clonal integration significantly affected leaf water content, leaf C, N contents, and root C, P contents. Notably, non-clonal plants exhibited 5.83% and 5.24% higher root C content compared with mother and daughter ramets in the shrub stage, and 1.3% and 0.5% higher in the tree stage, respectively. Root P content of non-clonal plants in the tree stage was 120.86% and 75.64% higher than that of mother and daughter ramets. 2) Significant nutrient differences existed between leaves and roots, with water content, C, N, and P contents being significantly higher in leaves than in roots, except for occasional non-significant differences in C and P contents. The effects of succession stage and clonal integration on C and P nutrient distribution were significant. In the tree stage, the mother ramets and daughter ramets transported more C and P nutrients to the leaves than the uncloned plants, but there was no significant difference in nutrient distribution between shrub and tree-shrub stages. 3) Under combined effects of clonal integration and successional changes, plant-rhizosphere soil interaction was significantly stronger in shrub and tree stages than in the shrub-tree stage, with mother ramets showing higher interaction intensity than daughter ramets and non-clonal plants. The rhizosphere soil pH, available nitrogen (HN), total phosphorus (TP) and available phosphorus (AP) in the shrub stage were positively correlated with the nutrients of L. chinense, and the pH was negatively correlated. The rhizosphere soil organic carbon (SOC), total nitrogen (TN), HN, TP and AP were positively correlated with the nutrients of L. chinense at the tree stage. This study showed that the natural succession and clonal integration of L. chinense community had a certain influence on the leaf and root nutrients and rhizosphere soil of L. chinense. For L. chinense in shrub and tree-shrub stages, it was necessary to improve soil pH and increase the supply of N and P nutrients. The tree stage is limited by the high calcium and magnesium high pH in the karst area, and its soil pH needs to be improved to help use soil nutrients.

Key words: Loropetalum chinense, clonal integration, leaf nutrient, root nutrient, karst

中图分类号:  Q948

[1] WAN J Z, WANG C J, YU F H.Large-scale environmental niche variation between clonal and non-clonal plant species:roles of clonal growth organs and ecoregions[J].Science of the Total Environment, 2019, 652:1071-1076.DOI:10.1016/j.scitotenv.2018.10.280.
[2] KLIMEŠ L, KLIMEŠOVÁ J, HENDRIKS R, et al.Clonal plant architecture:a comparative analysis of form and function[C]//DE KROON H, VAN GROENENDAEL J.The Ecology and Evolution of Clonal Plants.Leiden:Backbuys Publishers, 1997:1-29.
[3] 冯欣悦, 于跃, 张丽, 等.植物克隆整合生态效应及潜在应用[J].生态学报, 2024, 44(5):2149-2158.DOI:10.20103/j.stxb.202301170118.
[4] CARACO T, KELLY C K.On the adaptive value of physiological integraton in colonal plants[J].Ecology, 1991, 72(1):81-93.DOI:10.2307/1938904.
[5] 王蕤蕊, 张桥英, 张运春, 等.克隆整合与距离效应对不同镉胁迫下空心莲子草入侵性的影响[J].草业科学, 2024, 41(6):1297-1305.DOI:10.11829/j.issn.1001-0629.2023-0034.
[6] 李月华, 周钰航, 吴浩海, 等.莲草直胸跳甲取食密度对空心莲子草克隆整合能力的影响[J].福建农业学报, 2024, 39(10):1189-1197.DOI:10.19303/j.issn.1008-0384.2024.10.010.
[7] 但一, 邓洁, 段苏娟, 等.异质性光照下克隆整合对白夹竹根际土壤细菌共现网络的影响[J].四川师范大学学报(自然科学版), 2024, 47(6):769-778.DOI:10.3969/j.issn.1001-8395.2024.06.006.
[8] 莫燕华, 邹涵, 马姜明, 等.喀斯特石山不同演替阶段檵木群落土壤温湿度变化[J].广西师范大学学报(自然科学版), 2021, 39(3):122-130.DOI:10.16088/j.issn.1001-6600.2020033103.
[9] YU M Z, SONG S, HE G Z, et al.Vegetation landscape changes and driving factors of typical karst region in the anthropocene[J].Remote Sensing, 2022, 14(21):5391.DOI:10.3390/rs14215391.
[10] LI L, ZHANG H Q, TANG M, et al.Nutrient uptake and distribution in mycorrhizal cuttings of Populus × canadensis ‘Neva’ under drought stress[J].Journal of Soil Science and Plant Nutrition, 2021, 21(3):2310-2324.DOI:10.1007/s42729-021-00523-y.
[11] 覃扬浍, 马姜明, 梅军林, 等.漓江流域岩溶区檵木群落不同恢复阶段凋落物分解初期动态[J].生态学报, 2017, 37(20):6792-6799.DOI:10.5846/stxb201606291301.
[12] 王雅楠, 马姜明, 梁月明, 等.喀斯特石山老龄林檵木根际和非根际土壤微生物群落及酶活性的旱、雨季节变化[J].广西植物, 2024, 44(10):1848-1863.DOI:10.11931/guihaia.gxzw202307045.
[13] 菅瑞, 马姜明, 莫燕华, 等.桂林喀斯特石山檵木群落不同恢复阶段种间联结研究[J].广西植物, 2021, 41(5):746-757.DOI:10.11931/guihaia.gxzw201910029.
[14] WANG D H, SONG F S, ZHOU Y T, et al.Effects of alkaline salt stress on growth, physiological properties and medicinal components of clonal Glechoma longituba (Nakai) Kupr[J].BMC Plant Biology, 2024, 24(1):965.DOI:10.1186/s12870-024-05668-3.
[15] 马姜明, 吴蒙, 占婷婷, 等.漓江流域岩溶区檵木群落不同恢复阶段物种组成及多样性变化[J].生态环境学报, 2013, 22(1):66-71.DOI:10.16258/j.cnki.1674-5906.2013.01.002.
[16] LIU P W, DING S Y, LIU N, et al.Effects of detritus treatments on soil microbial community composition, structure andnutrient limitation in a subtropical karst ecosystem[J].Journal of Soil Science and Plant Nutrition, 2024, 24(2):3265-3281.DOI:10.1007/s42729-024-01750-9.
[17] 刘宁, 刘佩雯, 何浩勇, 等.凋落物对喀斯特檵木土壤微生物生物量和土壤酶活性的影响[J].广西师范大学学报(自然科学版), 2025, 43(1):161-173.DOI:10.16088/j.issn.1001-6600.2024080202.
[18] LI J, CHENG X Y, CHU G X, et al.Continuous cropping of cut Chrysanthemum reduces rhizospheric soil bacterial community diversity and co-occurrence network complexity[J].Applied Soil Ecology, 2023, 185:104801.DOI:10.1016/j.apsoil.2022.104801.
[19] 欧阳资文, 彭晚霞, 宋同清, 等.喀斯特峰丛洼地土壤有机质的空间变化及其对干扰的响应[J].应用生态学报, 2009, 20(6):1329-1336.
[20] 艾宁, 强大宏, 刘广全, 等.煤矿复垦区林龄与叶位对沙棘果叶含水量的影响[J].西北林学院学报, 2020, 35(1):68-72.DOI:10.3969/j.issn.1001-7461.2020.01.10.
[21] 魏杰, 王晶苑, 温学发.植物光合与呼吸过程CO2及其δ13C的变异特征与影响因素研究进展[J].生态学报, 2023, 43(10):4319-4331.DOI:10.5846/stxb202202180392.
[22] CHEN L L, DENG Q, YUAN Z Y, et al.Age-related C∶N∶P stoichiometry in two plantation forests in the Loess Plateau of China[J].Ecological Engineering, 2018, 120:14-22.DOI:10.1016/j.ecoleng.2018.05.021.
[23] 黄健, 吴凯, Muhammad Ahtesham Aslam, 等.光竞争对杉木幼苗生长、生物量分配及叶片化学计量特征的影响[J].西北林学院学报, 2024, 39(5):168-175.DOI:10.3969/j.issn.1001-7461.2024.05.21.
[24] 白瑞霞.养分异质条件下结缕草克隆分株及土壤氮、磷、钾的含量研究[D].沈阳:辽宁大学, 2016.
[25] LIU J T, GU Z J, SHAO H B, et al.N-P stoichiometry in soil and leaves of Pinus massoniana forest at different stand ages in the subtropical soil erosion area of China[J].Environmental Earth Sciences, 2016, 75(14):1091.DOI:10.1007/s12665-016-5888-7.
[26] CHANG Y N, ZHONG Q L, YANG H, et al.Patterns and driving factors of leaf C, N, and P stoichiometry in two forest types with different stand ages in a mid-subtropical zone[J].Forest Ecosystems, 2022, 9:100005.DOI:10.1016/j.fecs.2022.100005.
[27] HERBEN T, NOVÁKOVÁ Z, KLIMEŠOVÁ J.Clonal growth and plant species abundance[J].Annals of Botany, 2014, 114(2):377-388.DOI:10.1093/aob/mct308.
[28] 冯欣悦.刈割与施氮条件下羊草克隆整合对修复盐碱化草地的作用机制[D].长春:东北师范大学, 2023.DOI:10.27011/d.cnki.gdbsu.2023.001467.
[29] 段文军, 王金叶.广西喀斯特和红壤地区桉树人工林土壤理化性质对比研究[J].生态环境学报, 2013, 22(4):595-597.DOI:10.16258/j.cnki.1674-5906.2013.04.011.
[30] 衣晓丹.不同发育阶段杉木人工林土壤理化性质及凋落物养分储存量研究[D].北京:北京林业大学, 2013.
[31] 尹艳杰.川南不同林龄马尾松人工林土壤理化性质特征[D].雅安:四川农业大学, 2014.
[32] 罗华, 杨洪.浅谈对碱解氮的认识[J].石河子科技, 1999(2):42-44.
[33] 覃其云, 唐健, 邓小军, 等.广西马尾松人工林土壤肥力评价研究[J].林业调查规划, 2017, 42(6):16-21, 32.DOI:10.3969/j.issn.1671-3168.2017.06.004.
[34] XI D G, YOU W H, HU A N, et al.Developmentally programmed division of labor in the aquatic invader Alternanthera philoxeroides under homogeneous soil nutrients[J].Frontiers in Plant Science, 2019, 10:485.DOI:10.3389/fpls.2019.00485.
[35] SMAILL S J, CLINTON P W, ALLEN R B, et al.Coarse soil can enhance the availability of nutrients from fine soil[J].Journal of Plant Nutrition and Soil Science, 2014, 177(6):848-850.DOI:10.1002/jpln.201400463.
[36] LUO Y Z, LIU H, YAN G J, et al.Roots of lucerne seedlings are more resilient to a water deficit than leaves or stems[J].Agronomy, 2019, 9(3):123.DOI:10.3390/agronomy9030123.
[37] 李靖.不同林龄杉木和华北落叶松人工林氮磷养分特征与根构型研究[D].杨凌:西北农林科技大学, 2013.
[38] 盘金文, 郭其强, 孙学广, 等.不同林龄马尾松人工林碳、氮、磷、钾养分含量及其生态化学计量特征[J].植物营养与肥料学报, 2020, 26(4):746-756.DOI:10.11674/zwyf.19272.
[39] LOZANO Y M, AGUILAR-TRIGUEROS C A, FLAIG I C, et al.Root trait responses to drought are more heterogeneous than leaf trait responses[J].Functional Ecology, 2020, 34(11):2224-2235.DOI:10.1111/1365-2435.13656.
[40] 莫燕华, 马姜明, 苏静, 等.桂林岩溶石山檵木群落老龄林植物叶性状[J].广西植物, 2019, 39(8):1059-1068.DOI:10.11931/guihaia.gxzw201809005.
[41] 赵维俊, 敬文茂, 赵永宏, 等.祁连山大野口流域典型灌丛植物与土壤中氮磷的化学计量特征[J].土壤, 2017, 49(3):572-579.DOI:10.13758/j.cnki.tr.2017.03.021.
[42] 刘洢杋, 杨峻晖, 刘家齐, 等.喀斯特和非喀斯特森林植物磷含量及土壤无机磷分级特征比较[J].南方农业学报, 2023, 54(1):110-118.DOI:10.3969/j.issn.2095-1191.2023.01.011.
[43] 梁婷婷, 方晰, 孙龙, 等.亚热带4个树种不同器官C、N、P化学计量比及其异速关系[J].生态学报, 2025, 45(5):2449-2463.DOI:10.20103/j.stxb.202311142473.
[44] LONG M, WU H H, SMITH M D, et al.Nitrogen deposition promotes phosphorus uptake of plants in a semi-arid temperate grassland[J].Plant and Soil, 2016, 408(1):475-484.DOI:10.1007/s11104-016-3022-y.
[45] KRISTENSEN H L, STAVRIDOU E.Deep root growth and nitrogen uptake by rocket (Diplotaxis tenuifolia L.) as affected by nitrogen fertilizer, plant density and leaf harvesting on a coarse sandy soil[J].Soil Use and Management, 2017, 33(1):62-71.DOI:10.1111/sum.12334.
[46] ZHANG H P, YIN T M.Identifying hub genes and key functional modules in leaf tissue of Populus species based on WGCNA[J].Genetica, 2024, 153(1):5.DOI:10.1007/s10709-024-00222-3.
[47] ARAUS V, SWIFT J, ALVAREZ J M, et al.A balancing act:how plants integrate nitrogen and water signals[J].Journal of Experimental Botany, 2020, 71(15):4442-4451.DOI:10.1093/jxb/eraa054.
[48] CHEN X L, CHEN H Y H.Foliar nutrient resorption dynamics of trembling aspen and white birch during secondary succession in the boreal forest of central Canada[J].Forest Ecology and Management, 2022, 505:119876.DOI:10.1016/j.foreco.2021.119876.
[49] YANG X, WANG B R, FAKHER A, et al.Contribution of roots to soil organic carbon:From growth to decomposition experiment[J].Catena, 2023, 231:107317.DOI:10.1016/j.catena.2023.107317.
[50] 张华锋, 徐梁, 潘江灵, 等.於术现蕾期各器官主要营养元素含量及与土壤养分的相关性[J].山东林业科技, 2023, 53(2):44-49.DOI:10.3969/j.issn.1002-2724.2023.02.009.
[51] 张凯, 侯继华, 何念鹏.油松叶功能性状分布特征及其控制因素[J].生态学报, 2017, 37(3):736-749.DOI:10.5846/stxb201508291793.
[1] 汪洋, 侯满福, 柏硕. 氮磷添加对亚热带喀斯特森林凋落物分解的影响[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 228-237.
[2] 李佩云, 张苑, 陈荣枢, 胡馨月, 徐海荧, 吕利, 梁建宏, 朱婧. 石灰土与红壤的原土和团聚体中微生物对养分限制的响应策略[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 156-171.
[3] 何文敏, 刘宣园, 周岐海, 张明霞. 基于地形数据优化随机森林解译的准确度[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 227-236.
[4] 施慧露, 莫燕华, 骆海玉, 马姜明. 檵木乙酸乙酯萃取物抑菌活性研究[J]. 广西师范大学学报(自然科学版), 2025, 43(1): 1-8.
[5] 唐利, 李梦霞, 黄慧欣, 潘心茹, 姜雪芳, 杨淑君, 潘于, 覃云斌. 桂北喀斯特植被恢复对球囊霉素相关土壤蛋白的影响[J]. 广西师范大学学报(自然科学版), 2025, 43(1): 9-19.
[6] 刘宁, 刘佩雯, 何浩勇, 李嘉炜, 邓玉婷, 王露, 吕嘉恒, 卢丽求, 黄坚华, 马姜明. 凋落物对喀斯特檵木土壤微生物生物量和土壤酶活性的影响[J]. 广西师范大学学报(自然科学版), 2025, 43(1): 161-173.
[7] 杨盼, 黄莹, 岑丽捷, 黄丽, 王海苗. 红背山麻杆碳氮磷钾的分布及其计量比特征[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 169-178.
[8] 刘佩雯, 覃云斌, 莫慧婷, 周珍辉, 蒙伟明, 黄启祥, 马姜明. 凋落物及根系输入变化对喀斯特地区檵木土壤养分和胞外酶的影响[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 179-191.
[9] 刘宣园, 管超毅, 张明霞, 周岐海. 保护区缓解耕地扩张对喀斯特森林景观破碎化的影响研究[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 202-210.
[10] 何芳远, 苏权, 陈坤铨, 陈善栋, 姜勇, 罗明, 梁士楚. 基于功能性状及系统发育的桂林喀斯特石山群落构建[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 171-181.
[11] 童凌晨, 李强, 岳鹏鹏. 基于CiteSpace的喀斯特土壤有机碳研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 22-34.
[12] 唐创斌, 董佩佩, 黄秋婵, 谭卫宁, 周岐海, 汪国海. 啮齿动物对单性木兰和青冈栎种子搬运行为比较[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 199-204.
[13] 莫燕华, 邹涵, 马姜明, 李玉凤, 菅瑞, 秦佳双, 宋尊荣, 林正忠. 喀斯特石山不同演替阶段檵木群落土壤温湿度变化[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 122-130.
[14] 李友邦, 农娟丽, 杨婉琳, 赵佳佳, 朱琪琪. 弄岗同域分布赤腹松鼠和红颊长吻松鼠活动节律研究[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 71-78.
[15] 郭永丽, 全洗强, 吴庆. 北方喀斯特地区地下水VOCs污染特征及健康风险——以山东省淄博市临淄区为例[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 102-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 田晟, 赵凯龙, 苗佳霖. 基于改进YOLO11n模型的自动驾驶道路交通检测算法研究[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 1 -9 .
[2] 徐秀虹, 张进燕, 卢羽玲, 梁小平, 廖广凤, 卢汝梅. 萝藦科药用植物中新C21甾体的研究进展(Ⅱ)[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 1 -16 .
[3] 王星宇, 郑浩楠, 刘肖, 崔世龙, 蔡进军. 壳聚糖基吸附材料的制备及其吸附去除水中污染物的研究进展[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 17 -30 .
[4] 田晟, 冯帅涛, 李嘉. 一种基于复合框架的城市道路场景车辆轨迹提取方法[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 31 -51 .
[5] 吕辉, 司可. 基于改进RT-DETR的光伏板缺陷检测[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 52 -64 .
[6] 宋冠武, 李建军. 基于自蒸馏边缘细化的遥感图像语义分割[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 65 -76 .
[7] 王旭阳, 梁宇航. 多尺度非对称注意力遥感去雾Transformer[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 77 -89 .
[8] 张胜伟, 曹洁. 融合傅里叶卷积与差异感知的钢材表面微小缺陷检测算法[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 90 -102 .
[9] 王巍, 李智威, 张赵阳, 张洪, 周蠡, 王振, 黄放, 王灿. 基于IFA-BP神经网络模型的变电站碳排放预测[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 103 -114 .
[10] 罗缘, 朱文忠, 王文, 吴宇浩. 基于改进PatchTST的多步水质预测模型[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 115 -131 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发