广西师范大学学报(自然科学版) ›› 2026, Vol. 44 ›› Issue (2): 228-237.doi: 10.16088/j.issn.1001-6600.2025040803

• 生态环境科学研究 • 上一篇    下一篇

氮磷添加对亚热带喀斯特森林凋落物分解的影响

汪洋1,2,3, 侯满福1,2,3*, 柏硕1,2,3   

  1. 1.广西师范大学 环境与资源学院,广西 桂林 541006;
    2.珍稀濒危动植物生态与环境保护教育部重点实验室(广西师范大学),广西 桂林 541006;
    3.广西生态脆弱区环境过程与修复重点实验室(广西师范大学),广西 桂林 541006
  • 收稿日期:2025-04-08 修回日期:2025-05-28 发布日期:2026-02-03
  • 通讯作者: 侯满福(1976—),男,广西桂林人,广西师范大学副教授,博士。E-mail: houmanfu@163.com
  • 基金资助:
    国家自然科学基金(31960233)

Effect of Nitrogen and Phosphorus Addition on Litter Decompositionin Subtropical Karst Forests

WANG Yang1,2,3, HOU Manfu1,2,3*, BAI Shuo1,2,3   

  1. 1. College of Environment and Resources, Guangxi Normal University, Guilin Guangxi 541006, China;
    2. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    3. Guangxi Key Laboratory of Environmental Processesand Remediation in Ecologically Fragile Regions (Guangxi Normal University), Guilin Guangxi 541006, China
  • Received:2025-04-08 Revised:2025-05-28 Published:2026-02-03

摘要: 亚热带喀斯特生态系统土层浅薄,养分限制明显,凋落物分解及养分归还对其生态功能维持至关重要。全球变化下氮(N)、磷(P)沉降持续增加可能加剧喀斯特区养分限制,但其影响规律仍不清楚。本文研究通过一年期养分添加下凋落物分解试验,揭示N、P添加对喀斯特森林凋落物分解及养分释放的影响,结果表明:1)单独N添加显著抑制凋落物分解(-9.50%),效应集中于前期(0~180 d),而N+P添加在后期(180~360 d)显著促进分解(+10.46%),单独P添加影响不显著。2)N添加前期显著抑制纤维素分解(-21.04%),后期显著抑制木质素分解(-19.57%),而N+P添加前期显著促进木质素分解(+26.46%),后期显著促进纤维素分解(+20.76%)。3)N添加抑制绝大多数元素的释放,但仅在分解后期对N、Fe、Mn的抑制达到显著水平;N+P添加促进绝大多数元素的释放,但仅在前期对K、后期对C和N的促释作用达到显著水平;不同养分添加均抑制了P的释放,但仅P添加和N+P添加在后期达到显著水平,P添加对其他养分释放均无显著影响。4)凋落物C、N、微量元素释放及C/P、N/P比值与分解速率呈极显著正相关,突显了N、P共限制的效应特征及P化学计量平衡的主导作用。喀斯特生态系统的N、P共限制导致单独N或P添加对凋落物的分解与养分释放显著抑制或无影响,而N+P添加可协同促进分解并有效缓解养分限制。因此,在喀斯特生态系统养分循环研究中应充分关注N、P共限制的重要性。

关键词: 凋落物分解, 氮磷添加, 养分释放, 氮磷共限制, 喀斯特森林

Abstract: The shallow soil layer and pronounced nutrient limitations in subtropical karst ecosystems render litter decomposition and nutrient return crucial for maintaining ecological functions. Global changes involving continuous increase in nitrogen (N) and phosphorus (P) deposition may exacerbate nutrient limitations in karst regions, although the specific patterns of these impacts remain unclear. A one-year litter decomposition experiment under nutrient addition treatments was conducted to investigate the effects of N and P addition on litter decomposition and nutrient release in a karst forest. The results demonstrated that: (1) Sole N addition was found to significantly inhibit litter decomposition (-9.50%), particularly during the early decomposition phase (0-180 d), while N+P co-addition significantly enhanced decomposition (+10.46%) in the later phase (180-360 d). No significant effect was observed with P addition alone. (2) N addition was shown to significantly suppress cellulose decomposition (-21.04%) in the early phase and lignin decomposition (-19.57%) in the later phase. Conversely, N+P co-addition significantly promoted lignin decomposition (+26.46%) initially and cellulose decomposition (+20.76%) subsequently. (3) N addition inhibited the release of the majority of elements, although significant inhibition was only achieved for N, Fe, and Mn during the later decomposition stage. Combined N+P addition promoted the release of most elements, but significant promotion was only observed for K in the early stage and for C and N in the later stage. All nutrient addition treatments inhibited P release, but significant inhibition was only attained under sole P and combined N+P additions in the later stage. Sole P addition was observed to have no significant effect on the release of other nutrients. (4) Significant positive correlations were identified between decomposition rates and the release of C, N, trace elements, as well as C/P and N/P ratios, highlighting the co-limiting effects of N and P with particular emphasis on P stoichiometric regulation. The N-P co-limitation in karst ecosystems was revealed to induce suppression or null effects on litter decomposition and nutrient release under single nutrient additions, whereas synergistic enhancement was achieved through N-P co-addition. These findings emphasize the critical importance of considering N-P co-limitation in nutrient cycling studies of karst ecosystems.

Key words: litter decomposition, nitrogen and phosphorus addition, nutrient release, nitrogen and phosphorus co-limitation, karst forest

中图分类号:  Q948; S714

[1] DE VRIES W, DU E Z.Nitrogen deposition and its impacts on forest ecosystems[M]//Atmospheric Nitrogen Deposition to Global Forests.Amsterdam:Elsevier, 2024:1-13.DOI:10.1016/b978-0-323-91140-5.00013-0.
[2] PAN Y P, LIU B W, CAO J, et al.Enhancedatmospheric phosphorus deposition in Asia and Europe in the past two decades[J].Atmospheric and Oceanic Science Letters, 2021, 14(5):100051.DOI:10.1016/j.aosl.2021.100051.
[3] HOU S L, LÜ X T.Mixing effects of litter decomposition at plant organ and species levels in a temperate grassland[J].Plant and Soil, 2021, 459(1):387-396.DOI:10.1007/s11104-020-04773-0.
[4] 仲琦, 李曾燕, 马炜, 等.氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J].植物生态学报, 2023, 47(5):629-643.DOI:10.17521/cjpe.2022.0063.
[5] ZHANG J F, LI J, FAN Y X, et al.Effect of nitrogen and phosphorus addition on litter decomposition and nutrients release in a tropical forest[J].Plant and Soil, 2020, 454(1):139-153.DOI:10.1007/s11104-020-04643-9.
[6] KNORR M, FREY S D, CURTIS P S.Nitrogen additions and litter decomposition:a meta-analysis[J].Ecology, 2005, 86(12):3252-3257.DOI:10.1890/05-0150.
[7] HOBBIE S E.Nitrogen effects on decomposition:a five-year experiment ineight temperate sites[J].Ecology, 2008, 89(9):2633-2644.DOI:10.1890/07-1119.1.
[8] GONG J R, ZHANG Z H, ZHU C C, et al.The response of litter decomposition to phosphorus addition in typical temperate grassland in Inner Mongolia[J].Journal of Arid Environments, 2022, 197:104677.DOI:10.1016/j.jaridenv.2021.104677.
[9] PHOENIX G K, JOHNSON D A, MUDDIMER S P, et al.Niche differentiation and plasticity in soil phosphorus acquisition among co-occurring plants[J].Nature Plants, 2020, 6(4):349-354.DOI:10.1038/s41477-020-0624-4.
[10] WU W C, WANG F, XIA A Q, et al.Meta-analysis of the impacts of phosphorus addition on soil microbes[J].Agriculture, Ecosystems & Environment, 2022, 340:108180.DOI:10.1016/j.agee.2022.108180.
[11] LIU Y L, ZHANG A L, LI X Y, et al.Litter decomposition rate response to multiple global change factors:a meta-analysis[J].Soil Biology and Biochemistry, 2024, 195:109474.DOI:10.1016/j.soilbio.2024.109474.
[12] HU N, LAN J C.Impact of vegetation restoration on soil organic carbon stocks and aggregates in a karst rocky desertification area in Southwest China[J].Journal of Soils and Sediments, 2020, 20(3):1264-1275.DOI:10.1007/s11368-019-02532-y.
[13] 黄燕鹏, 刘建宇, 张策, 等.贵州石漠化区基岩风化地球化学过程及生态地质效应[J].中国地质调查, 2024, 11(4):62-71.DOI:10.19388/j.zgdzdc.2023.183.
[14] WANG J, WEN X F, ZHANG X Y, et al.Co-regulation of photosynthetic capacity by nitrogen, phosphorus and magnesium in a subtropical karst forest in China[J].Scientific Reports, 2018, 8:7406.DOI:10.1038/s41598-018-25839-1.
[15] 胡仪, 吴福忠, 吴秋霞, 等.三个亚热带森林优势种凋落物非结构性碳水化合物含量的季节动态[J].生态学报, 2022, 42(5):1901-1910.DOI:10.5846/stxb202103050606.
[16] WU P P, LI R, CAI F Y, et al.Interaction effects of organic mulch application rates and rainfall intensities on soil and water loss in karst sloping farmlands:Insights from a laboratory simulation experiment[J].Soil and Tillage Research, 2025, 252:106574.DOI:10.1016/j.still.2025.106574.
[17] LIU C C, LIU Y G, GUO K, et al.Mixing litter from deciduous and evergreen trees enhances decomposition in a subtropical karst forest in southwestern China[J].Soil Biology and Biochemistry, 2016, 101:44-54.DOI:10.1016/j.soilbio.2016.07.004.
[18] 薛飞, 龙翠玲, 廖全兰, 等.喀斯特森林不同地形凋落物现存量及养分特征[J].西北林学院学报, 2021, 36(5):28-35.DOI:10.3969/j.issn.1001-7461.2021.05.04.
[19] 李雨菲, 郭屹立, 李先琨, 等.桂西南喀斯特季节性雨林凋落叶分解速率和养分含量特征分析[J].地球学报, 2022, 43(4):483-490.DOI:10.3975/cagsb.2022.021001.
[20] 李杰, 刘家齐, 柒冰宇, 等.漓江流域喀斯特森林碳氮磷湿沉降通量动态变化[J].应用生态学报, 2024, 35(12):3393-3400.DOI:10.13287/j.1001-9332.202412.032.
[21] LONG J, ZHANG M J, LI J, et al.Soil macro- and mesofauna-mediated litter decomposition in a subtropical karst forest[J].Biotropica, 2021, 53(6):1465-1474.DOI:10.1111/btp.12980.
[22] CHASSAIN J, VIEUBLÉ GONOD L, CHENU C, et al.Role of different size classes of organisms in cropped soils:What do litterbag experiments tell us ? A meta-analysis[J].Soil Biology and Biochemistry, 2021, 162:108394.DOI:10.1016/j.soilbio.2021.108394.
[23] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科学技术出版社, 2000.
[24] ZHANG Q Y, JIA X X, LI T C, et al.Decreased soil total phosphorus following artificial plantation in the Loess Plateau of China[J].Geoderma, 2021, 385:114882.DOI:10.1016/j.geoderma.2020.114882.
[25] TONG X, HE X Q, DUAN H W, et al.Evaluation of controlled release urea on the dynamics of nitrate, ammonium, and its nitrogen release in black soils of Northeast China[J].International Journal of Environmental Research and Public Health, 2018, 15(1):119.DOI:10.3390/ijerph15010119.
[26] TIE L H, HU J X, PEÑUELAS J, et al.The amounts and ratio of nitrogen and phosphorus addition drive the rate of litter decomposition in a subtropical forest[J].Science of the Total Environment, 2022, 833:155163.DOI:10.1016/j.scitotenv.2022.155163.
[27] LI Y, LIANG Y, ZHANG H C, et al.Variation, distribution, and diversity of canonical ammonia-oxidizing microorganisms and complete-nitrifying bacteria in highly contaminated ecological restoration regions in the Siding mine area[J].Ecotoxicology and Environmental Safety, 2021, 217:112274.DOI:10.1016/j.ecoenv.2021.112274.
[28] ROWLAND A P, ROBERTS J D.Lignin and cellulose fractionation in decomposition studies using acid‐detergent fibre methods[J].Communications in Soil Science and Plant Analysis, 1994, 25(3/4):269-277.DOI:10.1080/00103629409369035.
[29] 陈思路, 蔡劲松, 林成芳, 等.亚热带不同树种凋落叶分解对氮添加的响应[J].植物生态学报, 2020, 44(3):214-227.DOI:10.17521/cjpe.2019.0299.
[30] DING Z L, LIU X, GONG L, et al.Response of litter decomposition and the soil environment to one-year nitrogen addition in a Schrenk spruce forest in the Tianshan Mountains, China[J].Scientific Reports, 2022, 12:648.DOI:10.1038/s41598-021-04623-8.
[31] BERG B, MATZNER E.Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems[J].Environmental Reviews, 1997, 5(1):1-25.DOI:10.1139/a96-017.
[32] PANG D B, WANG G Z, LIU Y G, et al.The impacts of vegetation types and soil properties on soil microbial activity and metabolic diversity in subtropical forests[J].Forests, 2019, 10(6):497.DOI:10.3390/f10060497.
[33] BERG B, STAAF H.Decomposition rate and chemical changes of Scots pine needle litter.II.influence of chemical composition[J].Ecological Bulletins, 1980, 32:373-390.
[34] WEEDON J T, CORNWELL W K, CORNELISSEN J H C, et al.Global meta-analysis of wood decomposition rates:a role for trait variation among tree species[J].Ecology Letters, 2009, 12(1):45-56.DOI:10.1111/j.1461-0248.2008.01259.x.
[35] ZHANG J F, ZHOU J G, LAMBERS H, et al.Nitrogen and phosphorus addition exerted different influences on litter and soil carbon release in a tropical forest[J].Science of the Total Environment, 2022, 832:155049.DOI:10.1016/j.scitotenv.2022.155049.
[36] FROMMHAGEN M, MUTTE S K, WESTPHAL A H, et al.Boosting LPMO-driven lignocellulose degradation by polyphenol oxidase-activated lignin building blocks[J].Biotechnology for Biofuels, 2017, 10(1):121.DOI:10.1186/s13068-017-0810-4.
[37] WANG X, XIA K, YANG X J, et al.Growth strategy of microbes on mixed carbon sources[J].Nature Communications, 2019, 10:1279.DOI:10.1038/s41467-019-09261-3.
[38] TSUNODA T, KACHI N, SUZUKI J I.Interactive effects of soil nutrient heterogeneity and belowground herbivory on the growth of plants with different root foraging traits[J].Plant and Soil, 2014, 384(1):327-334.DOI:10.1007/s11104-014-2215-5.
[39] BERG B.Nutrient release from litter and humus in coniferous forest soils:a mini review[J].Scandinavian Journal of Forest Research, 1986, 1(1/2/3/4):359-369.DOI:10.1080/02827588609382428.
[40] 陈翔, 周梅, 魏江生, 等.模拟氮沉降对兴安落叶松林凋落物分解的影响[J].生态环境学报, 2013, 22(9):1496-1503.DOI:10.16258/j.cnki.1674-5906.2013.09.009.
[41] 张慧慧, 白云玉, 张英洁, 等.长白山苔原带凋落物生态化学计量特征及其对模拟氮沉降的响应[J].生态学报, 2022, 42(21):8795-8808.DOI:10.5846/stxb202110212976.
[42] MOORHEAD D L, SINSABAUGH R L.A theoretical model of litter decay and microbial interaction[J].Ecological Monographs,2006, 76(2):151-174.DOI:10.1890/0012-9615(2006)076[0151:ATMOLD] 2.0.CO;2.
[43] 王玉鑫, 付晓莉, 王辉民, 等.氮磷添加对杉木根叶分解残余物微生物群落结构及酶活性的影响[J].生态学报, 2021, 41(13):5408-5416.DOI:10.5846/stxb202005111173.
[44] CHEN H, DONG S F, LIU L, et al.Effects of experimental nitrogen and phosphorus addition on litter decomposition in an old-growth tropical forest[J].PLoS One, 2013, 8(12):e84101.DOI:10.1371/journal.pone.0084101.
[45] 刘璐, 赵常明, 徐文婷, 等.神农架常绿落叶阔叶混交林凋落物养分特征[J].生态学报, 2019, 39(20):7611-7620.DOI:10.5846/stxb201808221787.
[46] SARDANS J, PEÑUELAS J.Potassium:a neglected nutrient in global change[J].Global Ecology and Biogeography, 2015, 24(3):261-275.DOI:10.1111/geb.12259.
[47] EDMONDS R L, THOMAS T B.Decomposition and nutrient release from green needles of western hemlock and Pacific silver fir in an old-growth temperate rain forest 9 Olympic National Park, Washington[J].Canadian Journal of Forest Research, 1995, 25(7):1049-1057.DOI:10.1139/x95-115.
[48] GOSZ J R, LIKENS G E, BORMANN F H.Nutrient release from decomposing leaf and branch litter in the Hubbard brook forest, new Hampshire[J].Ecological Monographs, 1973, 43(2):173-191.DOI:10.2307/1942193.
[49] 岳可欣, 龚吉蕊, 于上媛, 等.氮添加下典型草原凋落物质量和土壤酶活性对凋落物分解速率的影响[J].草业学报, 2020, 29(6):71-82.DOI:10.11686/cyxb2019417.
[50] OHNO T, FERNANDEZ I J, HIRADATE S, et al.Effects of soil acidification and forest type on water soluble soil organic matter properties[J].Geoderma, 2007, 140(1/2):176-187.DOI:10.1016/j.geoderma.2007.04.004.
[51] 王瑾, 黄建辉.暖温带地区主要树种叶片凋落物分解过程中主要元素释放的比较[J].植物生态学报, 2001, 25(3):375-380.
[52] 赵谷风, 蔡延, 罗媛媛, 等.青冈常绿阔叶林凋落物分解过程中营养元素动态[J].生态学报, 2006, 26(10):3286-3295.DOI:10.3321/j.issn:1000-0933.2006.10.018.
[53] 林成芳, 彭建勤, 洪慧滨, 等.氮、磷养分有效性对森林凋落物分解的影响研究进展[J].生态学报, 2017, 37(1):54-62.DOI:10.5846/stxb201608091636.
[54] 潘禹, 王克勤, 宋娅丽, 等.华山松林凋落物养分释放及土壤生态化学计量特征对模拟氮沉降的短期响应[J].生态环境学报, 2021, 30(3):492-502.DOI:10.16258/j.cnki.1674-5906.2021.03.007.
[1] 李钰慧, 陈泽柠, 黄中豪, 周岐海. 广西弄岗熊猴的雨季活动时间分配[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 80-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 田晟, 赵凯龙, 苗佳霖. 基于改进YOLO11n模型的自动驾驶道路交通检测算法研究[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 1 -9 .
[2] 徐秀虹, 张进燕, 卢羽玲, 梁小平, 廖广凤, 卢汝梅. 萝藦科药用植物中新C21甾体的研究进展(Ⅱ)[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 1 -16 .
[3] 王星宇, 郑浩楠, 刘肖, 崔世龙, 蔡进军. 壳聚糖基吸附材料的制备及其吸附去除水中污染物的研究进展[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 17 -30 .
[4] 田晟, 冯帅涛, 李嘉. 一种基于复合框架的城市道路场景车辆轨迹提取方法[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 31 -51 .
[5] 吕辉, 司可. 基于改进RT-DETR的光伏板缺陷检测[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 52 -64 .
[6] 宋冠武, 李建军. 基于自蒸馏边缘细化的遥感图像语义分割[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 65 -76 .
[7] 王旭阳, 梁宇航. 多尺度非对称注意力遥感去雾Transformer[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 77 -89 .
[8] 张胜伟, 曹洁. 融合傅里叶卷积与差异感知的钢材表面微小缺陷检测算法[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 90 -102 .
[9] 王巍, 李智威, 张赵阳, 张洪, 周蠡, 王振, 黄放, 王灿. 基于IFA-BP神经网络模型的变电站碳排放预测[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 103 -114 .
[10] 罗缘, 朱文忠, 王文, 吴宇浩. 基于改进PatchTST的多步水质预测模型[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 115 -131 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发