广西师范大学学报(自然科学版) ›› 2026, Vol. 44 ›› Issue (2): 65-76.doi: 10.16088/j.issn.1001-6600.2025040201

• 智能信息处理 • 上一篇    下一篇

基于自蒸馏边缘细化的遥感图像语义分割

宋冠武1,2, 李建军1*   

  1. 1.中南林业科技大学 计算机与数学学院,湖南 长沙 410004;
    2.中南林业科技大学涉外学院 信息与工程学院,湖南 长沙 410211
  • 收稿日期:2025-04-02 修回日期:2025-09-28 发布日期:2026-02-03
  • 通讯作者: 李建军(1970—),男,湖南长沙人,中南林业科技大学教授,博士。E-mail: lijianjun_21@163.com
  • 基金资助:
    国家自然科学基金(31570627);国家重点研发计划(2022YFD2200505);湖南省自然科学基金面上项目(202049382);湖南省自然科学基金(2020JJ4938)

Semantic Segmentation of Remote Sensing Images Basedon Self-distillation Edge Refinement

SONG Guanwu1,2, LI Jianjun1*   

  1. 1. School of Computer and Information Engineering, Central South University of Forestry andTechnology, Changsha Hunan 410004, China;
    2. School of Information and Engineering, Swan College, Central South University of Forestry and Technology, Changsha Hunan 410211, China
  • Received:2025-04-02 Revised:2025-09-28 Published:2026-02-03

摘要: 针对遥感图像语义分割过程中产生的边缘特征丢失与大量参数冗余现象,本文提出一种基于自蒸馏边缘细化的分割方法。首先基于EfficientNetB4构建主干网络;然后在自教师网络分支中引入轻量级边缘精细化模块(edge refinement module, ERM)以捕捉中间特征图的局部信息,保留被浅层神经网络过滤的中间边缘信息,从而提高遥感图像边缘像素分割精度;最后,使用每幅图像的二值类别标签为预测矩阵创建自适应多视角(self-adaptive multi-view, SAMV)向量,作为一种新知识指导编码器网络的训练,能更好地描述类内与类间分布,拟合层间与层内关系。在公开数据集DeepGlobe与Vaihingen上平均交并比分别达到72.4%和83.3%,对比实验表明,本文提出的方法能增强边缘特征的同时兼顾分割精度、模型参数与推理速度,在轻量化模型的同时具有良好的特征提取能力。

关键词: 自蒸馏, 边缘细化, 遥感图像, 语义分割, 自适应多视角

Abstract: A segmentation method based on self-distillation edge refinement is proposed in this paper to tackle the challenges of edge feature loss and excessive parameter redundancy encountered during semantic segmentation of remote sensing images. Firstly, a backbone network is constructed using EfficientNetB4 as the foundation. Subsequently, a lightweight edge refinement module is integrated into the self-teacher network branch. This module is designed to capture local information from intermediate feature maps while retaining the intermediate edge details filtered by shallow neural networks, with the purpose to improve the accuracy of edge pixel segmentation in remote sensing images. Finally, an adaptive multi-view vector is created to serve as a novel knowledge guide for encoder network training. This is achieves by utilizing the binary category labels of each image as the prediction matrix. The adaptive multi-view vector provides a better description of intra-class and inter-class distributions, as well as fitting inter-layer and intra-layer relationships. On the public datasets DeepGlobe and Vaihingen, the proposed method achieves an average intersection ratio of 72.4% and 83.3%, respectively. Comparative experiments demonstrate that the method introduced in this study enhances edge features while maintaining a balance among segmentation accuracy, model parameters, and inference speed. It has good feature extraction ability while lightweighting the model.

Key words: self-distillation, edge refinement, remote sensing images, semantic segmentation, adaptive multi-view

中图分类号:  TP751;TP391

[1] 苏林茂, 曹经.人工智能在遥感图像分类中的研究[J].中国科技信息, 2022(12):98-102.DOI:10.3969/j.issn.1001-8972.2022.12.031.
[2] 刘金香, 班伟, 陈宇, 等.融合多维度CNN的高光谱遥感图像分类算法[J].中国激光, 2021, 48(16):1610003.DOI:10.3788/CJL202148.1610003.
[3] 张淳民, 穆廷魁, 颜廷昱, 等.高光谱遥感技术发展与展望[J].航天返回与遥感, 2018, 39(3):104-114.DOI:10.3969/j.issn.1009-8518.2018.03.012.
[4] 龚健雅.人工智能时代测绘遥感技术的发展机遇与挑战[J].武汉大学学报(信息科学版), 2018, 43(12):1788-1796.DOI:10.13203/j.whugis20180082.
[5] CHEN L C, PAPANDREOU G, KOKKINOS I, et al.Deeplab:semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848.DOI:10.1109/TPAMI.2017.2699184.
[6] YANG M K, YU K, ZHANG C, et al.DenseASPP for semantic segmentation in street scenes[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Los Alamitos, CA:IEEE Computer Society, 2018:3684-3692.DOI:10.1109/CVPR.2018.00388.
[7] XIAO X Y, ZHAO Y Q, ZHANG F, et al.BASeg:boundary aware semantic segmentation for autonomous driving[J].Neural Networks, 2023, 157:460-470.DOI:10.1016/j.neunet.2022.10.034.
[8] GAO G W, XU G A, LI J C, et al.FBSNet:a fast bilateral symmetrical network for real-time semantic segmentation[J].IEEE Transactions on Multimedia, 2023, 25:3273-3283.DOI:10.1109/TMM.2022.3157995.
[9] SPASEV V, DIMITROVSKI I, CHORBEV I, et al.Semantic segmentation of unmanned aerial vehicle remote sensing images using SegFormer[C]//Intelligent Systems and Pattern Recognition.Cham:Springer Nature Switzerland AG, 2025:108-122.DOI:10.1007/978-3-031-82156-1_9.
[10] HINTON G, VINYALS O, DEAN J.Distilling the knowledge in a neural network[EB/OL].(2015-03-09)[2025-04-02].https://arxiv.org/abs/1503.02531.DOI:10.48550/arXiv.1503.02531.
[11] YANG C G, ZHOU H L, AN Z L, et al.Cross-image relational knowledge distillation for semantic segmentation[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Los Alamitos, CA:IEEE Computer Society, 2022:12309-12318.DOI:10.1109/CVPR52688.2022.01200.
[12] JI M I, SHIN S, HWANG S, et al.Refine myself by teaching myself:feature refinement via self-knowledge distillation[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Los Alamitos, CA:IEEE Computer Society, 2021:10659-10668.DOI:10.1109/CVPR46437.2021.01052.
[13] 孙显, 杨竹君, 李俊希, 等.基于知识自蒸馏的轻量化复杂遥感图像精细分类方法[J].指挥与控制学报, 2021, 7(4):365-373.DOI:10.3969/j.issn.2096-0204.2021.04.0365.
[14] ZHAO Q, MA Y J, LYU S C, et al.Embedded self-distillation in compact multibranch ensemble network for remote sensing scene classification[J].IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:4506415.DOI:10.1109/TGRS.2021.3126770.
[15] YANG C G, AN Z L, ZHOU H L, et al.MixSKD:Self-knowledge distillation from mixup for image recognition[C]//Computer Vision - ECCV 2022:LNCS Volume 13684.Cham:Springer Nature Switzerland AG, 2022:534-551.DOI:10.1007/978-3-031-20053-3_31.
[16] RASHEEDHA A, REETHIKA A, RAJESHWARI R, et al.A hierarchical aggregation network with edge guidance for sturdy medical image segmentation[C]//2024 2nd International Conference on Advances in Computation, Communication and Information Technology (ICAICCIT).Piscataway, NJ:IEEE, 2024:1105-1109.DOI:10.1109/ICAICCIT64383.2024.10912254.
[17] ROH W, JUNG H, NAM G, et al.Edge-aware 3D instance segmentation network with intelligent semantic prior[C]//2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Los Alamitos, CA:IEEE Computer Society, 2024:20644-20653.DOI:10.1109/CVPR52733.2024.01951.
[18] 张德雄.基于语义分割的森林场景区域识别技术研究[D].南京:东南大学, 2021.DOI:10.27014/d.cnki.gdnau.2021.003164.
[19] 张博洋.基于卷积神经网络的林木图像语义分割研究[D].哈尔滨:东北林业大学, 2022.DOI:10.27009/d.cnki.gdblu.2022.001505.
[20] HUYNH C, TRAN A T, LUU K, et al.Progressive semantic segmentation[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Los Alamitos, CA:IEEE Computer Society, 2021:16750-16759.DOI:10.1109/CVPR46437.2021.01648.
[21] LIU W X, LI Q, LIN X D, et al.Ultra-high resolution image segmentation via locality-aware context fusion and alternating local enhancement[J].International Journal of Computer Vision, 2024, 132(11):5030-5047.DOI:10.1007/s11263-024-02045-3.
[22] YANG L, BAI Y W, REN F L, et al.LCFNets:compensation strategy for real-time semantic segmentation of autonomous driving[J].IEEE Transactions on Intelligent Vehicles, 2024, 9(4):4715-4729.DOI:10.1109/TIV.2024.3363830.
[23] KARINE A, NAPOLÉON T, JRIDI M.Channel-spatial knowledge distillation for efficient semantic segmentation[J].Pattern Recognition Letters, 2024, 180:48-54.DOI:10.1016/j.patrec.2024.02.027.
[24] WU H L, HUANG P, ZHANG M, et al.CMTFNet:CNN and multiscale transformer fusion network for remote-sensing image semantic segmentation[J].IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:2004612.DOI:10.1109/TGRS.2023.3314641.
[25] CHEN B Z, LIU Y S, ZHANG Z, et al.TransAttUnet:multi-level attention-guided U-Net with transformer for medical image segmentation[J].IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(1):55-68.DOI:10.1109/TETCI.2023.3309626.
[26] WU H S, ZHAO Z B, WANG Z Z.META-Unet:multi-scale efficient transformer attention Unet for fast and high-accuracy polyp segmentation[J].IEEE Transactions on Automation Science and Engineering, 2024, 21(3):4117-4128.DOI:10.1109/TASE.2023.3292373.
[1] 王旭阳, 梁宇航. 多尺度非对称注意力遥感去雾Transformer[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 77-89.
[2] 王涛, 黎远松, 石睿, 陈慧宁, 侯宪庆. MGDE-UNet:轻量化光伏电池缺陷分割模型[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 45-55.
[3] 宋冠武, 陈知明, 李建军. 基于ResNet-50的级联注意力遥感图像分类[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 80-91.
[4] 陈知明, 张江, 邱汉清, 戴颖成, 吴宇鑫, 李建军. 基于密集连接的高分辨率遥感图像分类[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 88-94.
[5] 韦春荣, 何楚. 基于改进型互信息的遥感图像配准方法[J]. 广西师范大学学报(自然科学版), 2014, 32(2): 20-25.
[6] 周虹, 罗晓曙, 何富运. 一种改进的亚像素偏移算法研究[J]. 广西师范大学学报(自然科学版), 2010, 28(1): 170-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 田晟, 赵凯龙, 苗佳霖. 基于改进YOLO11n模型的自动驾驶道路交通检测算法研究[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 1 -9 .
[2] 徐秀虹, 张进燕, 卢羽玲, 梁小平, 廖广凤, 卢汝梅. 萝藦科药用植物中新C21甾体的研究进展(Ⅱ)[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 1 -16 .
[3] 王星宇, 郑浩楠, 刘肖, 崔世龙, 蔡进军. 壳聚糖基吸附材料的制备及其吸附去除水中污染物的研究进展[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 17 -30 .
[4] 田晟, 冯帅涛, 李嘉. 一种基于复合框架的城市道路场景车辆轨迹提取方法[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 31 -51 .
[5] 吕辉, 司可. 基于改进RT-DETR的光伏板缺陷检测[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 52 -64 .
[6] 王旭阳, 梁宇航. 多尺度非对称注意力遥感去雾Transformer[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 77 -89 .
[7] 张胜伟, 曹洁. 融合傅里叶卷积与差异感知的钢材表面微小缺陷检测算法[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 90 -102 .
[8] 王巍, 李智威, 张赵阳, 张洪, 周蠡, 王振, 黄放, 王灿. 基于IFA-BP神经网络模型的变电站碳排放预测[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 103 -114 .
[9] 罗缘, 朱文忠, 王文, 吴宇浩. 基于改进PatchTST的多步水质预测模型[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 115 -131 .
[10] 陈斯淋, 刘佳飞, 周何馨, 吴璟莉, 李高仕. 复杂网络中基于多特征引力模型的关键节点识别方法[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 132 -144 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发