广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (3): 88-94.doi: 10.16088/j.issn.1001-6600.2021071503

• 研究论文 • 上一篇    下一篇

基于密集连接的高分辨率遥感图像分类

陈知明, 张江, 邱汉清, 戴颖成, 吴宇鑫, 李建军*   

  1. 中南林业科技大学 计算机与信息工程学院, 湖南 长沙 410004
  • 收稿日期:2021-07-15 修回日期:2021-10-29 出版日期:2022-05-25 发布日期:2022-05-27
  • 通讯作者: 李建军(1970—), 男, 湖南沅江人, 中南林业科技大学教授, 博士。E-mail: lijianjun_21@163.com
  • 基金资助:
    国家自然科学基金(31570627); 国家林业局948项目(2015-4-17); 湖南省自然科学基金面上项目(202049382); 湖南省高等学校科学研究重点项目(20A506); 智慧物流技术湖南省重点实验室项目(2019TP1015)

High Resolution Remote Sensing Image Classification Based on Dense Connection

CHEN Zhiming, ZHANG Jiang, QIU Hanqing, DAI Yingcheng, WU Yuxin, LI Jianjun*   

  1. School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha Hunan 410004, China
  • Received:2021-07-15 Revised:2021-10-29 Online:2022-05-25 Published:2022-05-27

摘要: 高分辨率遥感图像分类是当前一个研究热点,基于深度卷积网络和全连接条件随机场的高分辨率遥感图像分类模型(Deeplab),因其高效精准的分类性能被广泛应用于该研究领域,但Deeplab模型存在空洞卷积核对高分辨率遥感图像的信息利用率不足、限制分类精度进一步提高的问题。本文提出一种基于密集连接的轻量级高分辨率遥感图像分类模型Dspp,采用密集卷积网络连接结构,将Deeplab的空洞卷积金字塔结构替换成密集连接结构,以提高信息利用率且增强模型的泛化能力,并与当前经典的FCN、FCN8S、Deeplab分类网络模型进行实验对比。结果表明,Dspp模型相较于FCN模型、FCN-8S模型和Deeplab模型的整体精度分别提高16.8、11.7和7.7个百分点,验证了本模型的有效性。

关键词: 高分辨率遥感图像, 分类模型, 空洞卷积, 密集连接结构, 全连接条件随机场

Abstract: High-resolution remote sensing image classification is a current research hotspot. The high-resolution remote sensing image classification model (Deeplab) based on deep convolutional networks and fully connected conditional random fields is widely used in this field because of its efficient and accurate classification performance. The Deeplab model has the problem of insufficient information utilization of high-resolution remote sensing images by hole convolution, which limits the further improvement of classification accuracy. In view of this, this paper proposes a new high-resolution remote sensing image classification model (Dspp). The Dspp model adopts a dense convolution network connection structure, and replaces Deeplab′s hollow convolution pyramid structure with a dense connection structure to improve information utilization and enhance the generalization ability of the model. Compared with the FCN model, the FCN-8S model and the Deeplab model, the overall accuracy of the Dspp model has improved by 16.8%, 11.7%, and 7.7%, which verifies the effectiveness of the model.

Key words: high resolution remote sensing image, classification model, hole convolution;dense connection structure, full connection conditional random field

中图分类号: 

  • TP751
[1]JI J, LU X C, LUO M, et al. Parallel fully convolutional network for semantic segmentation[J]. IEEE Access, 2021, 9: 673-682. DOI: 10.1109/ACCESS.2020.3042254.
[2]PENG C, LI Y Y, JIAO L C, et al. Densely based multi-scale and multi-modal fully convolutional networks for high-resolution remote-sensing image semantic segmentation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(8): 2612-2626. DOI: 10.1109/JSTARS.2019.2906387.
[3]BI Q, QIN K, ZHANG H, et al. APDC-Net: attention pooling-based convolutional network for aerial scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(9): 1603-1607. DOI: 10.1109/LGRS.2019.2949930.
[4]LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015: 3431-3440. DOI: 10.1109/TPAMI.2016:2572683.
[5]BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. DOI: 10.1109/TPAMI.2016.2644615.
[6]LI X M,CHEN H, QI X J, et al. H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes[J]. IEEE Transactions on Medical Imaging, 2018, 37(12): 2663-2674. DOI: 10.1109/TMI.2018.2845918.
[7]CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. DOI: 10.1109/TPAMI.2017.2699184.
[8]王云艳, 罗冷坤, 周志刚. 改进型DeepLab的极化SAR果园分类[J]. 中国图象图形学报, 2019, 24(11): 2035-2044.
[9]袁立, 袁吉收, 张德政. 基于DeepLab-v3+的遥感影像分类[J]. 激光与光电子学进展, 2019, 56(15): 236-243.
[10]陈天华, 郑司群, 于峻川. 采用改进DeepLab网络的遥感图像分割[J]. 测控技术, 2018, 37(11): 34-39.
[11]FAN H, WEI Q D, SHU D Q, et al. An improved deeplab based model for extracting cultivated land information from high definition remote sensing images[C]// 2019 IEEE International Conference on Signal, Information and Data Processing(ICSIDP). Piscataway: IEEE, 2019: 1-6. DOI: 10.1109/ICSIDP47821.2019.9173010.
[12]NIU Z J, LIU W, ZHAO J Y, et al. DeepLab-based spatial feature extraction for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(2): 251-255. DOI: 10.1109/LGRS.2018.2871507.
[13]FENG W Q, SUI H G, HUA L, et al. Improved deep fully convolutional network with superpixel-based conditional random fields for building extraction[C]// 2019 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE, 2019: 52-55. DOI: 10.1109/IGARSS.2019.8899163.
[14]HASSAN A, HUSSEIN W M, SAID E, et al. A deep learning framework for automatic airplane detection in remote sensing satellite images[C]// 2019 IEEE Aerospace Conference. Piscataway: IEEE, 2019: 1-10. DOI: 10.1109/AERO.2019.8741938.
[15]冯珂垚,饶鹏,陆福星,等.基于神经网络的高分辨率快速目标检测方法[J].电子设计工程,2018,26(22):169-173.
[16]HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269. DOI:10.1109/CVPR.2017.243
[17]KUSSUL N, LAVRENIUK M, SKAKUN S. Deep learning classification of land cover and crop types using remote sensing data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(5): 778-782. DOI: 10.1109/LGRS.2017.2681128.
[18]史路路, 郑柯, 唐娉, 等. 一种面向土地覆盖分类的卷积神经网络模型[J]. 遥感信息, 2019, 34(3): 34-42.
[19]柏宇阳, 朱福珍, 巫红. 改进的密集连接网络遥感图像超分辨重建[J]. 高技术通讯, 2021, 31(10): 1037-1043.
[20]张春森, 刘恒恒, 葛英伟, 等. 多尺度空洞卷积金字塔网络建筑物提取[J]. 西安科技大学学报, 2021, 41(3): 490-497, 574.
[21]贺伟, 王丹阳. 基于多尺度密集连接网络的图像超分辨算法[J]. 计算机仿真, 2021, 38(11): 259-265.
[22]马中启, 朱好生, 杨海仕, 等. 基于多特征融合密集残差CNN的人脸表情识别[J]. 计算机应用与软件, 2019, 36(7): 197-201.
[23]余璐璐. 基于残差密集网络的去运动模糊算法研究[D]. 武汉:武汉理工大学, 2020. DOI: 10.27381/d.cnki.gwlgu.2020.000635.
[24]张为, 魏晶晶. 嵌入DenseNet结构和空洞卷积模块的改进YOLO v3火灾检测算法[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(9): 976-983.
[25]张真真. 基于卷积神经网络和条件随机场的眼底图像血管分割研究[D]. 湘潭: 湘潭大学, 2018.
[26]袁帅, 王康, 单义. 基于多分支并行空洞卷积的多尺度目标检测算法[J]. 计算机辅助设计与图形学学报, 2021, 33(6): 864-872.
[1] 薛涛, 丘森辉, 陆豪, 秦兴盛. 基于经验模态分解和多分支LSTM网络汇率预测[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 41-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 艾艳, 贾楠, 王媛, 郭静, 潘东东. 多性状多位点遗传关联分析的统计方法研究及其应用进展[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 1 -14 .
[2] 白德发, 徐欣, 王国长. 函数型数据广义线性模型和分类问题综述[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 15 -29 .
[3] 曾庆樊, 秦永松, 黎玉芳. 一类空间面板数据模型的经验似然推断[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 30 -42 .
[4] 张治飞, 段谦, 刘乃嘉, 黄磊. 基于Jackknife互信息的高维非线性回归模型研究[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 43 -56 .
[5] 杨迪, 方扬鑫, 周彦. 基于MEB和SVM方法的新类别分类研究[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 57 -67 .
[6] 陈钟秀, 张兴发, 熊强, 宋泽芳. 非对称DAR模型的估计与检验[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 68 -81 .
[7] 杜锦丰, 王海荣, 梁焕, 王栋. 基于表示学习的跨模态检索方法研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 1 -12 .
[8] 李慕航, 韩萌, 陈志强, 武红鑫, 张喜龙. 面向复杂高效用模式的挖掘算法综述[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 13 -30 .
[9] 晁睿, 张坤丽, 王佳佳, 胡斌, 张维聪, 韩英杰, 昝红英. 中文多模态知识库构建[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 31 -39 .
[10] 李正光, 陈恒, 林鸿飞. 基于双向语言模型的社交媒体药物不良反应识别[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 40 -48 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发