广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (1): 30-42.doi: 10.16088/j.issn.1001-6600.2021060918

• 研究论文 • 上一篇    下一篇

一类空间面板数据模型的经验似然推断

曾庆樊, 秦永松, 黎玉芳*   

  1. 广西师范大学 数学与统计学院, 广西 桂林 541006
  • 收稿日期:2021-06-09 修回日期:2021-07-17 出版日期:2022-01-25 发布日期:2022-01-24
  • 通讯作者: 黎玉芳(1977—), 女, 广西桂林人, 广西师范大学副教授。E-mail: 53928208@qq.com
  • 基金资助:
    国家自然科学基金(12061017); 广西研究生创新计划(YCSW2021073)

Empirical Likelihood Inference for a Class of Spatial Panel Data Models

ZENG Qingfan, QIN Yongsong, LI Yufang*   

  1. School of Mathematics and Statistics, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2021-06-09 Revised:2021-07-17 Online:2022-01-25 Published:2022-01-24

摘要: 本文研究含空间自回归和空间误差自回归的时变系数空间面板数据模型的经验似然推断。利用鞅差序列将估计方程中的二次型转化为线性形式,构造模型参数的经验似然比统计量,并在一定条件下证明统计量的极限分布为卡方分布。

关键词: 空间面板数据模型, 时变系数, 鞅差序列, 经验似然, 渐近性质

Abstract: The empirical likelihood inference for a time-varying coefficient spatial panel data model with spatial autocorrelation and spatial error autocorrelation is investigated in this paper. By transferring the quadratic form of the estimation equation into a linear form of a martingale difference sequence, the empirical likelihood ratio statistic of the model parameters is constructed. It is shown that the limit distribution of the statistic is chi-square distribution under certain conditions.

Key words: spatial panel data model, time varying coefficient, martingale difference sequence, empirical likelihood, asymptotic property

中图分类号: 

  • O212.7
[1] PAELINCK J, KLAASSEN L. Spatial econometrics[M]. Farnborough: Saxon House, 1979.
[2]ANSELIN L. Spatial econometrics: methods and models[M]. The Netherlands: Kluwer Academic, 1988.
[3]KELEJIAN H H, PRUCHA I R. On the asymptotic distribution of the Moran I test statistic with applications[J]. Journal of Econometrics, 2001, 104: 219-257.
[4]LEE L F. Asymptotic distributions of quasi-maximum likelihood estimators for spatial econometric models[J]. Econometrica, 2004, 72: 1899-1925.
[5]LEE L F. GMM and 2SLS estimation of mixed regressive,spatial autoregressive models[J]. Journal of Econometrics, 2007, 137: 489-514.
[6]KAPOOR M, KELEJIAN H H, PRUCHA I R. Panel data models with spatially correlated error components[J]. Journal of Econometrics, 2007, 140: 97-130.
[7]LIN Z P. ML estimation of spatial panel data geographically weighted regression model[C]// IEEE International Conference on Management and Service Science, Wuhan: IEEE, 2011: 1-4.
[8]LEE L F, YU J. Estimation of spatial autoregressive panel data models with fixed effects[J]. Journal of Econometrics, 2010, 154(2): 165-85.
[9]ELHORST J P. Specification and estimation of spatial panel data models[J]. International Regional Science Review, 2003, 26: 244-268.
[10]邓明.时变系数空间自回归面板数据模型的极大似然估计[J].统计研究, 2016, 9: 96-103.
[11]邓明,钱争鸣.混合形式的变系数空间面板数据模型:一个多阶段估计[J].数理统计与管理, 2014, 33(3): 490-507.
[12]BALTAGI B H, PIROTTE A. Seemingly unrelated regressions with spatial error components[J]. Empirical Economics, 2011, 40(1): 5-49.
[13]KELEJIAN H H, PRUCHA I R. A generalized moments estimator for the autoregressive parameter in a spatial model[J]. International Economic Review, 1999, 40(2): 509-33.
[14]OWEN A B. Empirical likelihood ratio confidence intervals for a single functional[J]. Biometrika, 1988, 75(2): 237-249.
[15]OWEN A B. Empirical likelihood ratio confidence regions[J]. Annals of Statistics, 1990, 18(1): 90-120.
[16]CHUANG C S, CHAN N H. Empirical likelihood for autoregressive models, with applications to unstable time series[J]. Statistica Sinica, 2002, 12(2): 387-407.
[17]OWEN A B. Empirical likelihood for linear models[J]. Annals of Statistics, 1991, 19(4): 1725-1747.
[18]KOLACZYK E D. Empirical likelihood for generalized linear models[J]. Statistica Sinica, 1994, 4(1): 199-218.
[19]GUO H, ZOU C, WANG Z, et al. Empirical likelihood for high-dimensional linear regression models[J]. Metrika, 2014, 77(7): 921-945.
[20]QIN J, WONG A. Empirical likelihood in a semi-parametric model[J]. Scandinavian Journal of Statistics, 1996, 23(2): 209-219.
[21]BERTAIL P. Empirical likelihood in nonparametric and semiparametric models[M]. 北京: 科学出版社, 2004.
[22]NORDMAN D J. An empirical likelihood method for spatial regression[J]. Metrika, 2008, 68(3): 351-363.
[23]KOSTOV P. Empirical likelihood estimation of the spatial quantile regression[J]. Journal of Geographical Systems, 2013, 15: 51-69.
[24]QIN Y S. Empirical likelihood for spatial autoregressive models with spatial autoregressive disturbances[J]. Sankhya A, 2021, 83: 1-25.
[25]ZELLNER A. An efficient method of estimating seemingly unrelated regressions and test of aggregation bias[J]. Journal of the American Statistical Association. 1962, 57(298): 348-368.
[1] 陈钟秀, 张兴发, 熊强, 宋泽芳. 非对称DAR模型的估计与检验[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 68-81.
[2] 刘宇, 周稳, 李霓. 复发事件数据在含治愈个体的半参数比率模型下的经验似然推断[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 139-149.
[3] 张军舰,赖廷煜,杨晓伟. VaR和ES的贝叶斯经验似然估计[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 38-45.
[4] 秦永松, 杨翠莲. 负相协样本多维边际密度的经验似然推断[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 22-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘国伦, 宋树祥, 岑明灿, 李桂琴, 谢丽娜. 带宽可调带阻滤波器的设计[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 1 -8 .
[2] 刘铭, 张双全, 何禹德. 基于改进SOM神经网络的异网电信用户细分研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 17 -24 .
[3] 胡郁葱, 陈栩, 罗嘉陵. 多起终点多车型混载的定制公交线路规划模型[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 1 -11 .
[4] 唐堂, 魏承赟, 罗晓曙, 丘森辉. 基于附加惯性项人群搜索算法的四旋翼无人机姿态控制研究[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 12 -19 .
[5] 林越, 刘廷章, 黄莉荣, 奚晓晔, 潘建. 基于双向KL距离聚类算法的变压器状态异常检测[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 20 -26 .
[6] 韦振汉, 宋树祥, 夏海英. 基于随机森林的锂离子电池荷电状态估算[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 27 -33 .
[7] 许远静, 胡维平. 基于随机森林的不同程度病态嗓音识别[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 34 -41 .
[8] 张灿龙, 苏建才, 李志欣, 王智文. 基于AdaBoost置信图的红外与可见光目标跟踪[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 42 -50 .
[9] 刘电霆, 吴丽娜. 社会网络中基于信任的LDA主题模型领域专家推荐[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 51 -58 .
[10] 姜影星, 黄文念. 非线性薛定谔-麦克斯韦方程的基态解[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 59 -66 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发