|
广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (1): 30-42.doi: 10.16088/j.issn.1001-6600.2021060918
曾庆樊, 秦永松, 黎玉芳*
ZENG Qingfan, QIN Yongsong, LI Yufang*
摘要: 本文研究含空间自回归和空间误差自回归的时变系数空间面板数据模型的经验似然推断。利用鞅差序列将估计方程中的二次型转化为线性形式,构造模型参数的经验似然比统计量,并在一定条件下证明统计量的极限分布为卡方分布。
中图分类号:
[1] PAELINCK J, KLAASSEN L. Spatial econometrics[M]. Farnborough: Saxon House, 1979. [2]ANSELIN L. Spatial econometrics: methods and models[M]. The Netherlands: Kluwer Academic, 1988. [3]KELEJIAN H H, PRUCHA I R. On the asymptotic distribution of the Moran I test statistic with applications[J]. Journal of Econometrics, 2001, 104: 219-257. [4]LEE L F. Asymptotic distributions of quasi-maximum likelihood estimators for spatial econometric models[J]. Econometrica, 2004, 72: 1899-1925. [5]LEE L F. GMM and 2SLS estimation of mixed regressive,spatial autoregressive models[J]. Journal of Econometrics, 2007, 137: 489-514. [6]KAPOOR M, KELEJIAN H H, PRUCHA I R. Panel data models with spatially correlated error components[J]. Journal of Econometrics, 2007, 140: 97-130. [7]LIN Z P. ML estimation of spatial panel data geographically weighted regression model[C]// IEEE International Conference on Management and Service Science, Wuhan: IEEE, 2011: 1-4. [8]LEE L F, YU J. Estimation of spatial autoregressive panel data models with fixed effects[J]. Journal of Econometrics, 2010, 154(2): 165-85. [9]ELHORST J P. Specification and estimation of spatial panel data models[J]. International Regional Science Review, 2003, 26: 244-268. [10]邓明.时变系数空间自回归面板数据模型的极大似然估计[J].统计研究, 2016, 9: 96-103. [11]邓明,钱争鸣.混合形式的变系数空间面板数据模型:一个多阶段估计[J].数理统计与管理, 2014, 33(3): 490-507. [12]BALTAGI B H, PIROTTE A. Seemingly unrelated regressions with spatial error components[J]. Empirical Economics, 2011, 40(1): 5-49. [13]KELEJIAN H H, PRUCHA I R. A generalized moments estimator for the autoregressive parameter in a spatial model[J]. International Economic Review, 1999, 40(2): 509-33. [14]OWEN A B. Empirical likelihood ratio confidence intervals for a single functional[J]. Biometrika, 1988, 75(2): 237-249. [15]OWEN A B. Empirical likelihood ratio confidence regions[J]. Annals of Statistics, 1990, 18(1): 90-120. [16]CHUANG C S, CHAN N H. Empirical likelihood for autoregressive models, with applications to unstable time series[J]. Statistica Sinica, 2002, 12(2): 387-407. [17]OWEN A B. Empirical likelihood for linear models[J]. Annals of Statistics, 1991, 19(4): 1725-1747. [18]KOLACZYK E D. Empirical likelihood for generalized linear models[J]. Statistica Sinica, 1994, 4(1): 199-218. [19]GUO H, ZOU C, WANG Z, et al. Empirical likelihood for high-dimensional linear regression models[J]. Metrika, 2014, 77(7): 921-945. [20]QIN J, WONG A. Empirical likelihood in a semi-parametric model[J]. Scandinavian Journal of Statistics, 1996, 23(2): 209-219. [21]BERTAIL P. Empirical likelihood in nonparametric and semiparametric models[M]. 北京: 科学出版社, 2004. [22]NORDMAN D J. An empirical likelihood method for spatial regression[J]. Metrika, 2008, 68(3): 351-363. [23]KOSTOV P. Empirical likelihood estimation of the spatial quantile regression[J]. Journal of Geographical Systems, 2013, 15: 51-69. [24]QIN Y S. Empirical likelihood for spatial autoregressive models with spatial autoregressive disturbances[J]. Sankhya A, 2021, 83: 1-25. [25]ZELLNER A. An efficient method of estimating seemingly unrelated regressions and test of aggregation bias[J]. Journal of the American Statistical Association. 1962, 57(298): 348-368. |
[1] | 陈钟秀, 张兴发, 熊强, 宋泽芳. 非对称DAR模型的估计与检验[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 68-81. |
[2] | 刘宇, 周稳, 李霓. 复发事件数据在含治愈个体的半参数比率模型下的经验似然推断[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 139-149. |
[3] | 张军舰,赖廷煜,杨晓伟. VaR和ES的贝叶斯经验似然估计[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 38-45. |
[4] | 秦永松, 杨翠莲. 负相协样本多维边际密度的经验似然推断[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 22-29. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |