|
|
广西师范大学学报(自然科学版) ›› 2026, Vol. 44 ›› Issue (2): 77-89.doi: 10.16088/j.issn.1001-6600.2025061001
王旭阳*, 梁宇航
WANG Xuyang*, LIANG Yuhang
摘要: 雾霾干扰会导致遥感图像结构模糊、细节丢失,严重影响下游视觉任务的准确性。为此,本文提出一种异构增强的遥感图像去雾网络,从空间结构建模与频率信息整合2个层面提升特征恢复能力。具体而言,设计多尺度非对称注意力Transformer模块,引入方向感知机制以增强模糊边缘与纹理细节的建模;同时构建基于小波变换高低频自适应增强模块,使用Haar小波分解分离频域信息,分别通过高频与低频子模块强化边缘轮廓与结构表达。2个模块分别嵌入特征提取与融合阶段,协同缓解传统方法方向性建模不足与高频特征易丢失等问题。在保持低计算开销的前提下,本文方法在HAZE1K与RICE数据集上的平均PSNR/SSIM性能分别达到24.993 6/0.909 9与33.180 2/0.894 2,在细节恢复方面表现出显著优势。
中图分类号: TP391.41;TP751
| [1] DALLA MURA M, BENEDIKTSSON J A, WASKE B, et al.Morphological attribute profiles for the analysis of very high resolution images[J].IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(10):3747-3762.DOI:10.1109/TGRS.2010.2048116. [2] BRUNNER D, LEMOINE G, BRUZZONE L.Earthquake damage assessment of buildings using VHR optical and SAR imagery[J].IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(5):2403-2420.DOI:10.1109/TGRS.2009.2038274. [3] BERMAN D, TREIBITZ T, AVIDANS.Non-local image dehazing[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Los Alamitos, CA:IEEE Computer Society, 2016:1674-1682.DOI:10.1109/CVPR.2016.185. [4] BERMAN D, TREIBITZ T, AVIDANS.Air-light estimation using haze-lines[C]//2017 IEEE International Conference on Computational Photography (ICCP).Piscataway, NJ:IEEE, 2017:115-123.DOI:10.1109/ICCPHOT.2017.7951489. [5] HE K M, SUN J, TANG X O.Single image haze removal using dark channel prior[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12):2341-2353.DOI:10.1109/TPAMI.2010.168. [6] ZHU Q S, MAI J M, SHAO L.A fast single image haze removal algorithm using color attenuation prior[J].IEEE Transactions on Image Processing, 2015, 24(11):3522-3533.DOI:10.1109/TIP.2015.2446191. [7] LEVIN A, WEISS Y, DURAND F, et al.Understanding and evaluating blind deconvolution algorithms[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ:IEEE, 2009:964-1971.DOI:10.1109/CVPR.2009.5206815. [8] SHAN Q, JIA J Y, AGARWALA A.High-quality motion deblurring from a single image[J].ACM Transactions on Graphics, 2008, 27(3):1-10.DOI:10.1145/1360612.1360672. [9] 陈云龙, 姜钦霞, 邓飞凤, 等.基于多尺度Retinex算法的电力巡检可见光遥感图像去雾自动化增强[J].自动化与仪表, 2024, 39(12):88-91, 95.DOI:10.19557/j.cnki.1001-9944.2024.12.019. [10] CHEN Z X, HE Z W, LU Z M.DEA-Net:single image dehazing based on detail-enhanced convolution and content-guided attention[J].IEEE Transactions on Image Processing, 2024, 33:1002-1015.DOI:10.1109/TIP.2024.3354108. [11] ENGIN D, GENC A, EKENEL H K.Cycle-Dehaze:enhanced CycleGAN for single image dehazing[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).Los Alamitos, CA:IEEE Computer Society, 2018:938-946.DOI:10.1109/CVPRW.2018.00127. [12] TAO X, GAO H Y, SHEN X Y, et al.Scale-recurrent network for deep image deblurring[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Los Alamitos, CA:IEEE Computer Society, 2018:8174-8182.DOI:10.1109/CVPR.2018.00853. [13] QIN X, WANG Z L, BAI Y C, et al.FFA-Net:feature fusion attention network for single image dehazing[J].Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7):11908-11915.DOI:10.1609/aaai.v34i07.6865. [14] RAJASEKARAN G, ABITHA V, VAISHNAVI S M.Image dehazing algorithm based on artificial multi-exposure image fusion[J].Multimedia Tools and Applications, 2023, 82(26):41241-41251.DOI:10.1007/s11042-023-15210-6. [15] LU L P, XIONG Q, XU B R, et al.MixDehazeNet:mix structure block for image dehazing network[C]//2024 International Joint Conference on Neural Networks (IJCNN).Piscataway, NJ:IEEE, 2024:1-10.DOI:10.1109/IJCNN60899.2024.10651326. [16] 孙航, 方帅领, 但志平, 等.层级特征交互与增强感受野双分支遥感图像去雾网络[J].遥感学报, 2023, 27(12):2831-2846.DOI:10.11834/jrs.20232333. [17] TSAI F J, PENG Y T, LIN Y, et al.Stripformer:strip transformer for fast image deblurring[C]//Computer Vision- ECCV 2022:LNCS Volume 13679.Cham:Springer Nature Switzerland AG, 2022:146-162.DOI:10.1007/978-3-031-19800-7_9. [18] 马六, 毛克彪, 郭中华.基于混合注意力生成对抗网络的遥感图像去雾方法[J].智慧农业(中英文), 2025, 7(2):172-182.DOI:10.12133/j.smartag.SA202410011. [19] CAI B L, XU X M, JIA K, et al.DehazeNet:an end-to-end system for single image haze removal[J].IEEE Transactions on Image Processing, 2016, 25(11):5187-5198.DOI:10.1109/TIP.2016.2598681. [20] 李愿, 付辉, 刘浩志.双重注意力下的多尺度残差遥感图像去雾网络[J].自然资源遥感, 2025, 37(4):31-39.DOI:10.6046/zrzyyg.2024154. [21] WANG Z D, CUN X D, BAO J M, et al.Uformer:a general U-shaped transformer for image restoration[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Los Alamitos, CA:IEEE Computer Society, 2022:17662-17672.DOI:10.1109/CVPR52688.2022.01716. [22] 杨燕, 晁丽鹏.基于多维协同注意力的双支特征联合去雾网络[J].浙江大学学报(工学版), 2025, 59(6):1119-1129.DOI:10.3785/j.issn.1008-973X.2025.06.003. [23] KULKARNI A, MURALA S.Aerial image dehazing with attentive deformable transformers[C]//2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV).Los Alamitos, CA:IEEE Computer Society, 2023:6294-6303.DOI:10.1109/WACV56688.2023.00624. [24] 周景, 田兆星, 王满意.融合外部注意力的扩散模型巡检图像去雾[J].电子测量技术, 2024, 47(15):144-152.DOI:10.19651/j.cnki.emt.2416080. [25] YU H, ZHENG N S, ZHOU M, et al.Frequency and spatial dual guidance for image dehazing[C]//Computer Vision - ECCV 2022:LNCS Volume 13679.Cham:Springer Nature Switzerland AG, 2022:181-198.DOI:10.1007/978-3-031-19800-7_11. [26] KHMAG A.Image dehazing and defogging based on second-generation wavelets and estimation of transmission map[J].Multimedia Tools and Applications, 2024, 83(19):57089-57105.DOI:10.1007/s11042-023-17819-z. [27] JIANG B, CHEN G T, WANG J S, et al.Deep dehazing network for remote sensing image with non-uniform haze[J].Remote Sensing, 2021, 13(21):4443.DOI:10.3390/rs13214443. [28] LI Y, ZHAO Y F.RSID:a remote sensing image dehazing network[C]//Pattern Recognition and Computer Vision:LNCS Volume 14430.Singapore:Springer Nature Singapore Pte Ltd., 2024:3-14.DOI:10.1007/978-981-99-8537-1_1. [29] ZAMIR S W, ARORA A, KHAN S, et al.Restormer:efficient transformer for high-resolution image restoration[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Los Alamitos, CA:IEEE Computer Society, 2022:5718-5729.DOI:10.1109/CVPR52688.2022.00564. [30] NUTHI R, KANKANALA S.SWAM-Net+:selective wavelet attentive M-network+ for single image dehazing[J].Circuits Systems and Signal Processing, 2025, 44(1):281-305.DOI:10.1007/s00034-024-02837-5. [31] KONG L S, DONG J X, GE J J, et al.Efficient frequency domain-based transformers for high-quality image deblurring[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Los Alamitos, CA:IEEE Computer Society, 2022:5886-5895.DOI:10.1109/CVPR52729.2023.00570. [32] DWIVEDI P, CHAKRABORTY S.FrTrGAN:single image dehazing using the frequency component of transmission maps in the generative adversarial network[J].Computer Vision and Image Understanding, 2025, 255:104336.DOI:10.1016/j.cviu.2025.104336. [33] 刘春黔, 林浩然, 雷印杰.面向多浓度非均匀云雾的双域遥感图像去雾算法[J].现代计算机, 2024, 30(3):9-17.DOI:10.3969/j.issn.1007-1423.2024.03.002. [34] HUANG B H, LI Z, YANG C, et al.Single satellite optical imagery dehazing using SAR image prior based on conditional generative adversarial networks[C]//2020 IEEE Winter Conference on Applications of Computer Vision (WACV).Los Alamitos, CA:IEEE Computer Society, 2020:1795-1802.DOI:10.1109/WACV45572.2020.9093471. [35] LIN D Y, XU G L, WANG X K, et al.A remote sensing image dataset for cloud removal[EB/OL].(2019-01-03)[2025-06-10].https://arxiv.org/abs/1901.00600.DOI:10.48550/arXiv.1901.00600. [36] FU M H, LIU H, YU Y K, et al.DW-GAN:a discrete wavelet transform GAN for nonhomogeneous dehazing[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).Los Alamitos, CA:IEEE Computer Society, 2021:203-212.DOI:10.1109/CVPRW53098.2021.00029. |
| [1] | 田晟, 冯帅涛, 李嘉. 一种基于复合框架的城市道路场景车辆轨迹提取方法[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 31-51. |
| [2] | 吕辉, 司可. 基于改进RT-DETR的光伏板缺陷检测[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 52-64. |
| [3] | 罗缘, 朱文忠, 王文, 吴宇浩. 基于改进PatchTST的多步水质预测模型[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 115-131. |
| [4] | 韩华彬, 高丙朋, 蔡鑫, 孙凯. 基于HO-CNN-BiLSTM-Transformer模型的风机叶片结冰故障诊断[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 13-28. |
| [5] | 魏梓书, 陈志刚, 王衍学, 哈斯铁尔·马德提汗. 基于SBSI-YOLO11的轻量化轴承外观缺陷检测算法[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 80-91. |
| [6] | 刘廷汉, 梁艳, 黄鹏升, 闭金杰, 黄守麟, 李廷会. 基于改进YOLOv8s的人脸痤疮小目标检测[J]. 广西师范大学学报(自然科学版), 2025, 43(5): 114-129. |
| [7] | 易见兵, 张裕贤, 曹锋, 李俊, 彭鑫, 陈鑫. 基于时空注意力的3D人体姿态估计网络设计[J]. 广西师范大学学报(自然科学版), 2025, 43(5): 130-144. |
| [8] | 黎宗孝, 张健, 罗鑫悦, 赵嶷飞, 卢飞. 基于K-means和Adam-LSTM的机场进场航迹预测研究[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 15-23. |
| [9] | 韩烁, 江林峰, 杨建斌. 基于注意力机制PINNs方法求解圣维南方程[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 58-68. |
| [10] | 石天怡, 南新元, 郭翔羽, 赵濮, 蔡鑫. 基于改进ConvNeXt的苹果叶片病害分类算法[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 83-96. |
| [11] | 王旭阳, 章家瑜. 基于跨模态增强网络的时序多模态情感分析[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 97-107. |
| [12] | 苏春海, 夏海英. 抗噪声双约束网络的面部表情识别[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 70-82. |
| [13] | 李欣, 宁静. 基于时空特征融合的电力系统暂态稳定评估[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 89-100. |
| [14] | 侯海燕, 谭玉枚, 宋树祥, 夏海英. 头部姿态鲁棒的面部表情识别[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 126-137. |
| [15] | 卢家辉, 陈庆锋, 王文广, 余谦, 何乃旭, 韩宗钊. 基于多尺度注意力的器官图像分割方法[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 138-148. |
|
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |