广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (4): 58-68.doi: 10.16088/j.issn.1001-6600.2024061802

• 智能信息处理 • 上一篇    下一篇

基于注意力机制PINNs方法求解圣维南方程

韩烁, 江林峰, 杨建斌*   

  1. 河海大学 数学学院, 江苏 南京 210000
  • 收稿日期:2024-06-18 修回日期:2024-07-28 出版日期:2025-07-05 发布日期:2025-07-14
  • 通讯作者: 杨建斌(1983—),男,江苏兴化人,河海大学教授,博士。E-mail:jbyang@hhu.edu.cn
  • 基金资助:
    国家自然科学基金(12271140);河海大学中央高校基本科研业务费资助项目(B220202081)

Attention-based PINNs Method for Solving Saint-Venant Equations

HAN Shuo, JIANG Linfeng, YANG Jianbin*   

  1. School of Mathematics, Hohai University, Nanjing Jiangsu 210000, China
  • Received:2024-06-18 Revised:2024-07-28 Online:2025-07-05 Published:2025-07-14

摘要: 针对物理信息神经网络(PINNs)方法在处理时间依赖性问题上的不足,本文提出一种基于注意力机制的物理信息神经网络(PINNsFormer)模拟洪水动态的方法,将PINNsFormer模型应用于求解圣维南方程。PINNsFormer模型能够有效捕捉时空依赖关系,从而提高求解精度和泛化能力。实验结果表明,此方法在模拟洪水传播和捕捉水面剖面细节方面表现出色。在与PINNs以及处理时间特征的神经网络模型FLS和QRes的对比中,PINNsFormer均具有更高的稳定性和精确性。在水平平面和均匀逆坡上的数值试验中,PINNsFormer方法均实现最低的损失值和测试误差,精度达到10-4量级,准确再现洪水淹没边界的形状。

关键词: 圣维南方程, PINNs, Transformer, 注意力机制

Abstract: A method for simulating flood dynamics using Physics-Informed Neural Networks with Attention Mechanism (PINNsFormer) is proposed to address the shortcomings of Physics-Informed Neural Networks (PINNs) in handling time-dependent problems. The PINNsFormer model is applied to solve the Saint-Venant equations. The model effectively captures spatiotemporal dependencies, thus improving accuracy and generalization. Experimental results show that this method performs excellently in simulating flood propagation and capturing water surface profile details. Compared with PINNs and neural network models FLS and QRes, which handle time features, PINNsFormer demonstrates higher stability and accuracy. Numerical experiments on a horizontal plane and a uniform adverse slope indicate that the PINNsFormer method achieves the lowest loss values and test errors, reaching an accuracy of 10-4 magnitude, accurately reproducing the shape of flood inundation boundaries.

Key words: Saint-Venant equations, PINNs, transformer, attention mechanism

中图分类号:  TP183;O241.8

[1] LAI W C, KHAN A A. Numerical solution of the Saint-Venant equations by an efficient hybrid finite-volume/finite-difference method[J]. Journal of Hydrodynamics, 2018, 30(2): 189-202. DOI: 10.1007/s42241-018-0020-y.
[2] SUKRON M, HABIBAH U, HIDAYAT N. Numerical solution of Saint-Venant equation using Runge-Kutta fourth-order method[J]. Journal of Physics: Conference Series, 2021, 1872(1): 012036. DOI: 10.1088/1742-6596/1872/1/012036.
[3] 钱江,张鼎.圣维南方程的3次B样条拟插值数值解[J].计算机科学,2023,50(4): 125-132. DOI: 10.11896/jsjkx.220800118.
[4] E W N, YU B. The Deep Ritz Method: a deep learning-based numerical algorithm for solving variational problems[J]. Communications in Mathematics and Statistics, 2018, 6(1): 1-12. DOI: 10.1007/s40304-018-0127-z.
[5] LONG Z C, LU Y P, DONG B. PDE-Net 2.0: learning PDEs from data with a numeric-symbolic hybrid deep network[J]. Journal of Computational Physics, 2019, 399: 108925. DOI: 10.1016/j.jcp.2019.108925.
[6] LI Z Y, KOVACHKI N, AZIZZADENESHELI K, et al. Fourier neural operator for parametric partial differential equations[EB/OL]. (2021-05-17)[2024-06-01]. https://arxiv.org/abs/2010.08895. DOI: 10.48550/arXiv.2010.08895.
[7] RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. DOI: 10.1016/j.jcp.2018.10.045.
[8] 高飞,郭晓斌,袁冬芳,等.改进PINNs方法求解边界层对流占优扩散方程[J].广西师范大学学报(自然科学版),2023,41(6): 33-50. DOI: 10.16088/j.issn.1001-6600.2023032203.
[9] LU L, MENG X H, MAO Z P, et al. DeepXDE: a deep learning library for solving differential equations[J]. SIAM Review, 2021, 63(1): 208-228. DOI: 10.1137/19M1274067.
[10] JAGTAP A D, KARNIADAKIS G E. Extended physics-informed neural networks (XPINNs): a generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations[J]. Communications in Computational Physics, 2020, 28(5): 2002-2041. DOI: 10.4208/cicp.oa-2020-0164.
[11] YU J, LU L, MENG X H, et al. Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 393: 114823. DOI: 10.1016/j.cma.2022.114823.
[12] LU L, JIN P Z, PANG G F, et al. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators[J]. Nature Machine Intelligence, 2021, 3(3): 218-229. DOI: 10.1038/S42256-021-00302-5.
[13] FENG D Y, TAN Z L, HE Q Z. Physics-informed neural networks of the Saint-Venant equations for downscaling a large-scale river model[J]. Water Resources Research, 2023, 59(2): e2022WR033168. DOI: 10.1029/2022WR033168.
[14] 方卫华,徐孟启.基于PINNs的圣维南方程组数据同化方法[J].水资源保护,2023,39(3): 24-31,64. DOI: 10.3880/j.issn.1004-6933.2023.03.004.
[15] NAZARI L F, CAMPONOGARA E, SEMAN L O. Physics-informed neural networks for modeling water flows in a river channel[J]. IEEE Transactions on Artificial Intelligence, 2024, 5(3): 1001-1015. DOI: 10.1109/TAI.2022.3200028.
[16] ZHAO Z Y, DING X Y, PRAKASH B A. PINNsFormer: a transformer-based framework for physics-informed neural networks[EB/OL]. (2024-05-07)[2024-06-01]. https://arxiv.org/abs/2307.11833. DOI: 10.48550/arXiv.1804.02767.
[17] 田晟,胡啸.基于Transformer模型的车辆轨迹预测[J].广西师范大学学报(自然科学版),2024,42(3): 47-58. DOI: 10.16088/j.issn.1001-6600.2023061203.
[18] WONG J C, OOI C C, GUPTA A, et al. Learning in sinusoidal spaces with physics-informed neural networks[J]. IEEE Transactions on Artificial Intelligence, 2024, 5(3): 985-1000. DOI: 10.1109/TAI.2022.3192362.
[19] BU J, KARPATNE A. Quadratic residual networks: a new class of neural networks for solving forward and inverse problems in physics involving PDEs[C]//Proceedings of the 2021 SIAM International Conference on Data Mining (SDM). Philadelphia, PA: Society for Industrial and Applied Mathematics, 2021: 675-683. DOI: 10.1137/1.9781611976700.76.
[20] DE ALMEIDAG A M, PAUL B. Applicability of the local inertial approximation of the shallow water equations to flood modeling[J]. Water Resources Research, 2013,49(8): 4833-4844. DOI: 10.1002/wrcr.20366.
[21] HUNTER N M, HORRITT M S, BATES P D, et al. An adaptive time step solution for raster-based storage cell modelling of floodplain inundation[J]. Advances in Water Resources, 2005, 28(9): 975-991. DOI: 10.1016/j.advwatres.2005.03.007.
[1] 田晟, 熊辰崟, 龙安洋. 基于改进PointNet++的城市道路点云分类方法[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 1-14.
[2] 石天怡, 南新元, 郭翔羽, 赵濮, 蔡鑫. 基于改进ConvNeXt的苹果叶片病害分类算法[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 83-96.
[3] 王旭阳, 章家瑜. 基于跨模态增强网络的时序多模态情感分析[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 97-107.
[4] 卢展跃, 陈艳平, 杨卫哲, 黄瑞章, 秦永彬. 基于掩码注意力与多特征卷积网络的关系抽取方法[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 12-22.
[5] 郭翔羽, 石天怡, 陈燕楠, 南新元, 蔡鑫. 基于YOLO-CDBW模型的列车接触网异物检测研究[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 56-69.
[6] 苏春海, 夏海英. 抗噪声双约束网络的面部表情识别[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 70-82.
[7] 刘玉娜, 马双宝. 基于改进YOLOv8n的轻量化织物疵点检测算法[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 83-94.
[8] 戴林华, 黎远松, 石睿, 何忠良, 李雷. HSED-YOLO:一种轻量化的带钢表面缺陷检测模型[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 95-106.
[9] 余快, 宋宝贵, 邵攀, 余翱. 基于层级尺度交互的U-Net遥感影像建筑物提取方法[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 121-132.
[10] 卢家辉, 陈庆锋, 王文广, 余谦, 何乃旭, 韩宗钊. 基于多尺度注意力的器官图像分割方法[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 138-148.
[11] 杜帅文, 靳婷. 基于用户行为特征的深度混合推荐算法[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 91-100.
[12] 田晟, 胡啸. 基于Transformer模型的车辆轨迹预测[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 47-58.
[13] 王天雨, 袁嘉伟, 齐芮, 李洋. 多类型知识增强的微博立场检测模型[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 79-90.
[14] 肖宇庭, 吕晓琪, 谷宇, 刘传强. 基于拆分残差网络的糖尿病视网膜病变分类[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 91-101.
[15] 席凌飞, 伊力哈木·亚尔买买提, 刘雅洁. 基于改进YOLOv5的铝型材表面缺陷检测方法[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 111-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 何安康, 陈艳平, 扈应, 黄瑞章, 秦永彬. 融合边界交互信息的命名实体识别方法[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 1 -11 .
[2] 卢展跃, 陈艳平, 杨卫哲, 黄瑞章, 秦永彬. 基于掩码注意力与多特征卷积网络的关系抽取方法[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 12 -22 .
[3] 齐丹丹, 王长征, 郭少茹, 闫智超, 胡志伟, 苏雪峰, 马博翔, 李时钊, 李茹. 基于主题多视图表示的零样本实体检索方法[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 23 -34 .
[4] 黄川洋, 程灿儿, 李松威, 陈鸿东, 张秋楠, 张钊, 邵来鹏, 唐剑, 王咏梅, 郭奎奎, 陆航林, 胡君辉. 带涂覆层的长周期光纤光栅温度传感特性研究[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 35 -42 .
[5] 田晟, 熊辰崟, 龙安洋. 基于改进PointNet++的城市道路点云分类方法[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 1 -14 .
[6] 黎宗孝, 张健, 罗鑫悦, 赵嶷飞, 卢飞. 基于K-means和Adam-LSTM的机场进场航迹预测研究[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 15 -23 .
[7] 宋铭楷, 朱成杰. 基于H-WOA-GWO和区段修正策略的配电网故障定位研究[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 24 -37 .
[8] 陈禹, 陈磊, 张怡, 张志瑞. 基于QMD-LDBO-BiGRU的风速预测模型[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 38 -57 .
[9] 李志欣, 匡文兰. 结合互注意力空间自适应和特征对集成判别的细粒度图像分类[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 69 -82 .
[10] 石天怡, 南新元, 郭翔羽, 赵濮, 蔡鑫. 基于改进ConvNeXt的苹果叶片病害分类算法[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 83 -96 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发