广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (4): 38-57.doi: 10.16088/j.issn.1001-6600.2024062402

• 智能信息处理 • 上一篇    下一篇

基于QMD-LDBO-BiGRU的风速预测模型

陈禹, 陈磊*, 张怡, 张志瑞   

  1. 华北理工大学 电气工程学院, 河北 唐山 063210
  • 收稿日期:2024-06-24 修回日期:2024-09-16 出版日期:2025-07-05 发布日期:2025-07-14
  • 通讯作者: 陈磊(1981—),男,河南南阳人,华北理工大学副教授。E-mail:3686496861@qq.com
  • 基金资助:
    国家重点研发计划(2021YFE0190900);教育部产学合作协同育人项目(230802495182120)

Wind Speed Prediction Model Based on QMD-LDBO-BiGRU

CHEN Yu, CHEN Lei*, ZHANG Yi, ZHANG Zhirui   

  1. College of Electrical Engineering, North China University of Science and Technology, Tangshan Hebei 063210, China
  • Received:2024-06-24 Revised:2024-09-16 Online:2025-07-05 Published:2025-07-14

摘要: 针对风速的随机性和波动性,为了进一步提高预测精度,本文提出一种融合二次模态分解、改进的蜣螂优化算法以及双向门控循环单元的组合预测模型。首先,针对蜣螂优化算法(DBO)中存在的容易陷入局部最优、全局搜索能力差等问题,引入拉丁超立方抽样、切线飞行等策略对DBO进行改进,并将改进算法(LDBO)用于BiGRU的参数寻优;其次,利用二次模态分解降低原始数据的复杂度,为后续建模提供稳定的序列数据;然后,使用BiGRU分别对二次模态分解后所得到的各模态分量分别进行预测,叠加各模态分量的预测结果作为最终预测结果;最后,将所提出的QMD-LDBO-BiGRU预测模型与其他4种主流预测模型(CNN-LSTM、TCN-RVM、ELM-Adaboost、BiTCN-SVM)进行对比实验,结果表明QMD-LDBO-BiGRU模型的评价指标R2达到98.086%,与对比模型相比分别提高21.396、19.525、11.474、5.457个百分点,验证了所提模型的有效性及适用性,为进一步提高风速预测的准确性提供一定参考。

关键词: 风速预测, 二次模态分解, CEEMDAN, VMD, 蜣螂优化算法, 双向门控循环单元

Abstract: In order to reduce the randomness and volatility of wind speed and further improve the prediction accuracy, a combined prediction model combining with quadratic mode decomposition, which can improve dung beetle optimizer and bidirectional gated recurrent unit was proposed. Firstly, aiming at the problems such as local optimization and poor global search ability in Dung Beetle optimizer (DBO), the improved algorithm (LDBO) is improved by introducing Latin hypercube sampling, tangential flight and other strategies, and the improved algorithm (LDBO) is used for parameter optimization of BiGRU. Secondly, the quadratic modal decomposition is used to reduce the complexity of the original data and provide stable sequence data for subsequent modeling. Then, BiGRU is used to predict each modal component obtained after the quadratic mode decomposition, and the prediction results of each modal component are superimposed as the final prediction results. Finally, the proposed QMD-LDBO-BiGRU prediction model is compared with other four mainstream prediction models (CNN-LSTM, TCN-RVM, ELM-Adaboost, BiTCN-SVM). Experimental results show that the evaluation index R2 of the QMD-LDBO-BiGRU model reaches 98.086%, which is increased by 21.396, 19.525, 11.474, 5.457 percentage points compared with the comparison model, respectively, which verifies the effectiveness and applicability of the proposed model and provides a certain reference for further improving the accuracy of wind speed prediction.

Key words: wind speed prediction, quadratic mode decomposition, CEEMDAN, VMD, Dung beetle optimizer, bidirectional gated recurrent unit

中图分类号:  TM614;TP18

[1] LIU H, CHEN C. Data processing strategies in wind energy forecasting models and applications: a comprehensive review[J]. Applied Energy, 2019, 249: 392-408. DOI: 10.1016/j.apenergy.2019.04.188.
[2] 赵泽妮,云斯宁,贾凌云,等.基于统计模型的短期风能预测方法研究进展[J].太阳能学报,2022,43(11): 224-234. DOI: 10.19912/j.0254-0096.tynxb.2021-0500.
[3] LI Z M, WU L, XU Y, et al. Distributed tri-layer risk-averse stochastic game approach for energy trading among multi-energy microgrids[J]. Applied Energy, 2023, 331: 120282. DOI: 10.1016/j.apenergy.2022.120282.
[4] ZHOU Y, ZHOU N R, GONG L H, et al. Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine[J]. Energy, 2020, 204: 117894. DOI: 10.1016/j.energy.2020.117894.
[5] 韦振汉,宋树祥,夏海英.基于随机森林的锂离子电池荷电状态估算[J].广西师范大学学报(自然科学版),2018,36(4): 27-33. DOI: 10.16088/j.issn.1001-6600.2018.04.004.
[6] ZHANG J L, LIU Z Y, CHEN T. Interval prediction of ultra-short-term photovoltaic power based on a hybrid model[J]. Electric Power Systems Research, 2023, 216: 109035. DOI: 10.1016/j.epsr.2022.109035.
[7] ZHOU H Y R, ZHOU Y H, HU J J, et al. LSTM-based energy management for electric vehicle charging in commercial-building prosumers[J]. Journal of Modern Power Systems and Clean Energy, 2021, 9(5): 1205-1216. DOI: 10.35833/MPCE.2020.000501.
[8] FARHI N, KOHEN E, MAMANE H, et al. Prediction of wastewater treatment quality using LSTM neural network[J]. Environmental Technology & Innovation, 2021, 23: 101632. DOI: 10.1016/j.eti.2021.101632.
[9] KHOSRAVI A, MACHADO L, NUNES R O. Time-series prediction of wind speed using machine learning algorithms: A case study Osorio wind farm, Brazil[J]. Applied Energy, 2018, 224: 550-566. DOI: 10.1016/j.apenergy.2018.05.043.
[10] KULAMALA V K, KUMAR L, MOHAPATRA D P. Software fault prediction using LSSVM with different kernel functions[J]. Arabian Journal for Science and Engineering, 2021,46(9): 8655-8664. DOI: 10.1007/s13369-021-05643-2.
[11] PEI S Q, QIN H, ZHANG Z D, et al. Wind speed prediction method based on Empirical Wavelet Transform and New Cell Update Long Short-Term Memory network[J]. Energy Conversion and Management, 2019, 196: 779-792. DOI: 10.1016/j.enconman.2019.06.041.
[12] WANG Y S, LIAO W L, CHANG Y Q. Gated recurrent unit network-based short-term photovoltaic forecasting[J]. Energies, 2018, 11(8): 2163. DOI: 10.3390/en11082163.
[13] DAMESHGHI A, REFAN M H. Combination of condition monitoring and prognosis systems based on current measurement and PSO-LS-SVM method for wind turbine DFIGs with rotor electrical asymmetry[J]. Energy Systems, 2021, 12(1): 203-232. DOI: 10.1007/s12667-019-00357-9.
[14] 颜宏文,卢格宇.CEEMD-WT和CNN在短期风速预测中的应用研究[J].计算机工程与应用,2018,54(9): 224-230. DOI: 10.3778/j.issn.1002-8331.1612-0256.
[15] 金子皓,向玲,李林春,等.基于完备集合经验模态分解的SE-BiGRU超短期风速预测[J].电力科学与工程,2023,39(1): 9-16. DOI: 10.3969/j.ISSN.1672-0792.2023.01.002.
[16] XUE J K, SHEN B. Dung Beetle optimizer: a new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2023, 79(7): 7305-7336. DOI: 10.1007/s11227-022-04959-6.
[17] ROSLI S J, RAHIM H A, ABDUL RANI K N, et al. A hybrid modified method of the sine cosine algorithm using Latin hypercube sampling with the cuckoo search algorithm for optimization problems[J]. Electronics, 2020, 9(11): 1786. DOI: 10.3390/electronics9111786.
[18] WANG Q Y, NAKASHIMA T, LAI C G, et al. Modified algorithms for fast construction of optimal Latin-hypercube design[J]. IEEE Access, 2020, 8: 191644-191658. DOI: 10.1109/ACCESS.2020.3032122.
[19] LAYEB A. Tangent search algorithm for solving optimization problems[J]. Neural Computing and Applications, 2022, 34(11): 8853-8884. DOI: 10.1007/s00521-022-06908-z.
[20] TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al. A complete ensemble empirical mode decomposition with adaptive noise[C]//2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway, NJ: IEEE Press, 2011: 4144-4147. DOI: 10.1109/ICASSP.2011.5947265.
[21] HUANG S C, ZHANG J, HE Y, et al. Short-term load forecasting based on the CEEMDAN-sample entropy-BPNN-transformer[J]. Energies, 2022, 15(10): 3659. DOI: 10.3390/en15103659.
[22] 吉兴全,赵国航,叶平峰,等.基于QMD-HBiGRU的短期光伏功率预测方法[J].高电压技术,2024,50(9): 3850-3859. DOI: 10.13336/j.1003-6520.hve.20230333.
[23] MORENO S R, DA SILVA R G, MARIANI V C, et al. Multi-step wind speed forecasting based on hybrid multi-stage decomposition model and long short-term memory neural network[J]. Energy Conversion and Management, 2020, 213: 112869. DOI: 10.1016/j.enconman.2020.112869.
[24] RICHMAN J S, MOORMAN J R. Physiological time-series analysis using approximate entropy and sample entropy[J]. American Journal of Physiology Heart and Circulatory Physiology, 2000, 278(6): H2039-H2049. DOI: 10.1152/ajpheart.2000.278.6.h2039.
[25] LI X C, MA X F, XIAO F C, et al. Application of gated recurrent unit (GRU) neural network for smart batch production prediction[J]. Energies, 2020, 13(22): 6121. DOI: 10.3390/en13226121.
[26] 邹智,吴铁洲,张晓星,等.基于贝叶斯优化CNN-BiGRU混合神经网络的短期负荷预测[J].高电压技术,2022,48(10): 3935-3945. DOI: 10.13336/j.1003-6520.hve.20220168.
[27] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. DOI: 10.1016/j.advengsoft.2013.12.007.
[28] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. DOI: 10.1016/j.advengsoft.2016.01.008.
[29] MIRJALILI S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm[J]. Knowledge-based Systems, 2015, 89: 228-249. DOI: 10.1016/j.knosys.2015.07.006.
[30] ASKARZADEH A. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm[J]. Computers & Structures, 2016, 169: 1-12. DOI: 10.1016/j.compstruc.2016.03.001.
[31] 刘睿,莫愿斌.增强型麻雀搜索算法及其工程优化应用[J].小型微型计算机系统,2023,44(3): 497-505. DOI: 10.20009/j.cnki.21-1106/TP.2021-0591.
[32] HUANG N T, WU Y Y, CAI G W, et al. Short-term wind speed forecast with low loss of information based on feature generation of OSVD[J]. IEEE Access, 2019, 7: 81027-81046. DOI: 10.1109/access.2019.2922662.
[1] 杜晓昕, 牛丽明, 王波, 王一萍, 李长荣, 王振飞. 基于邻域搜索策略的蜣螂优化算法及应用[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 149-167.
[2] 谭全伟, 薛贵军, 谢文举. 基于VMD和RDC-Informer的短期供热负荷预测模型[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 39-51.
[3] 郑修斌, 陈珺. 基于蜣螂优化算法的光伏电池参数辨识[J]. 广西师范大学学报(自然科学版), 2024, 42(4): 51-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 何安康, 陈艳平, 扈应, 黄瑞章, 秦永彬. 融合边界交互信息的命名实体识别方法[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 1 -11 .
[2] 卢展跃, 陈艳平, 杨卫哲, 黄瑞章, 秦永彬. 基于掩码注意力与多特征卷积网络的关系抽取方法[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 12 -22 .
[3] 齐丹丹, 王长征, 郭少茹, 闫智超, 胡志伟, 苏雪峰, 马博翔, 李时钊, 李茹. 基于主题多视图表示的零样本实体检索方法[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 23 -34 .
[4] 黄川洋, 程灿儿, 李松威, 陈鸿东, 张秋楠, 张钊, 邵来鹏, 唐剑, 王咏梅, 郭奎奎, 陆航林, 胡君辉. 带涂覆层的长周期光纤光栅温度传感特性研究[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 35 -42 .
[5] 田晟, 熊辰崟, 龙安洋. 基于改进PointNet++的城市道路点云分类方法[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 1 -14 .
[6] 黎宗孝, 张健, 罗鑫悦, 赵嶷飞, 卢飞. 基于K-means和Adam-LSTM的机场进场航迹预测研究[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 15 -23 .
[7] 宋铭楷, 朱成杰. 基于H-WOA-GWO和区段修正策略的配电网故障定位研究[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 24 -37 .
[8] 韩烁, 江林峰, 杨建斌. 基于注意力机制PINNs方法求解圣维南方程[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 58 -68 .
[9] 李志欣, 匡文兰. 结合互注意力空间自适应和特征对集成判别的细粒度图像分类[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 69 -82 .
[10] 石天怡, 南新元, 郭翔羽, 赵濮, 蔡鑫. 基于改进ConvNeXt的苹果叶片病害分类算法[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 83 -96 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发