2025年04月05日 星期六

广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (2): 149-167.doi: 10.16088/j.issn.1001-6600.2024040902

• 智能信息处理 • 上一篇    下一篇

基于邻域搜索策略的蜣螂优化算法及应用

杜晓昕1,2*, 牛丽明1, 王波1,2, 王一萍1,2, 李长荣1,2, 王振飞1   

  1. 1.齐齐哈尔大学 计算机与控制工程学院, 黑龙江 齐齐哈尔 161006;
    2.黑龙江省大数据网络安全检测分析重点实验室(齐齐哈尔大学), 黑龙江 齐齐哈尔 161006
  • 收稿日期:2024-04-09 修回日期:2024-06-26 出版日期:2025-03-05 发布日期:2025-04-02
  • 通讯作者: 杜晓昕(1983—), 女, 江苏徐州人, 齐齐哈尔大学教授。E-mail: xiaoxindu@qqhru.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(42271409); 黑龙江省自然科学基金(LH2021D022); 黑龙江省省属高等学校基本科研业务费自然科学类青年创新人才项目(145209206)

Dung Beetle Optimization Algorithm Based on Neighborhood Search Strategy and Application

DU Xiaoxin1,2*, NIU Liming1, WANG Bo1,2, WANG Yiping1,2, LI Changrong1,2, WANG Zhenfei1   

  1. 1. College of Computer and Control Engineering, Qiqihar University, Qiqihar Heilongjiang 161006, China;
    2. Heilongjiang Key Laboratory of Big Data Network Security Detection and Analysis (Qiqihar University), Qiqihar Heilongjiang 161006, China
  • Received:2024-04-09 Revised:2024-06-26 Online:2025-03-05 Published:2025-04-02

摘要: 针对蜣螂优化算法存在收敛速度慢,容易陷入局部最优,且全局探索能力较弱等问题,受领导者-追随者策略(leader-follower)的启发,本文提出一种基于邻域搜索策略的蜣螂优化算法。首先,引入Singer映射初始化种群,提高初始解的质量,提高算法的收敛速度;其次,提出一种邻域搜索策略来增强种群多样性,跳出局部收敛,提高算法的局部开发能力;最后,设计一种精英池-扰动策略来扩大搜索范围,增强算法的全局勘探和局部寻优能力,提高算法的求解效率及求解精度。为了验证所提算法的有效性,本文设计一系列实验来验证所提算法的性能,结果表明,该算法在寻优精度和收敛速度方面有较大提升。将该算法应用于无人机三维路径规划问题,实验结果表明,该算法在处理实际应用问题时表现出了有效性和高效性。

关键词: 蜣螂优化算法, 路径规划, Singer映射, 邻域搜索策略, 精英池-扰动策略

Abstract: Taking inspiration from the leader follower strategy, a dung beetle optimization algorithm based on neighborhood search strategy is proposed to address the problems of slow convergence speed, easy falling into local optima, and weak global exploration ability in the optimization algorithm. Firstly, introducing Singer mapping to initialize the population improves the quality of initial solutions and enhances the convergence speed of the algorithm; Secondly, a neighborhood search strategy is proposed to enhance population diversity, break away from local convergence, and improve the local development ability of the algorithm; Finally, an elite pool perturbation strategy is designed to expand the search range, enhance the algorithm’s global exploration and local optimization capabilities, and improve the algorithm’s solving efficiency and accuracy. In order to verify the effectiveness of the proposed algorithm, a series of experiments are designed in this paper to verify its performance. The results indicate that the algorithm has significantly improved optimization accuracy and convergence speed. The algorithm is applied to the three-dimensional path planning problem of unmanned aerial vehicles, and the experimental results show that the algorithm demonstrates effectiveness and efficiency in dealing with practical application problems.

Key words: dung beetle optimization algorithm, path planning, singer mapping, neighborhood search strategy, elite pool-disturbance strategy

中图分类号:  TP301.6

[1] XUE J K, SHEN B. Dung beetle optimizer: a new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2023, 79(7): 7305-7336. DOI: 10.1007/s11227-022-04959-6.
[2] 刘艺梦, 丁小明, 王会强, 等. 基于蜣螂算法优化BP的冬夏生菜根区温度预测模型[J]. 农业工程学报, 2024, 40(5): 231-238. DOI: 10.11975/j.issn.1002-6819.202312071.
[3] 李宇, 刘玲, 薛铸. 基于群智能算法的土壤水分特征曲线模型参数优化[J]. 节水灌溉, 2023(12): 57-65. DOI: 10.12396/jsgg.2023208.
[4] 易望远, 尹瑞雪, 田应权, 等. 数控铣削能耗预测及切削参数多目标优化研究[J]. 重庆理工大学学报(自然科学), 2024, 38(3): 240-249. DOI: 10.3969/j.issn.1674-8425(z).2024.03.026.
[5] 夏焰坤, 黄鹏, 任俊杰, 等. 改进蜣螂算法优化混合核极限学习机的系统谐波阻抗估计[J]. 电力系统及其自动化学报, 2024, 36(11): 69-78. DOI: 10.19635/j.cnki.csu-epsa.001431.
[6] 游志平, 马宏, 梁群, 等. 基于IDBO-KELM的汽车零部件激光熔覆几何形貌预测建模方法研究[J]. 应用激光, 2024, 44(3): 51-62. DOI: 10.14128/j.cnki.al.20244403.051.
[7] JIANG H, DENG J H, CHEN Q S. Olfactory sensor combined with chemometrics analysis to determine fatty acid in stored wheat [J]. Food Control,2023, 153: 109942. DOI: 10.1016/j.foodcont.2023.109942.
[8] 何凯, 廖玉松, 张小光. 基于NGO-VMD和DBO-SVM的滚动轴承早期故障诊断[J]. 西安航空学院学报, 2024, 42(1): 41-47. DOI: 10.20096/j.xhxb.1008-9233.2024.01.008.
[9] 赵鑫, 王东丽, 彭泓, 等. 基于多策略改进蜣螂算法优化的变压器故障诊断[J]. 电力系统保护与控制, 2024, 52(6): 120-130. DOI: 10.19783/j.cnki.pspc.230783.
[10] WANG Z D, HUANG LL, YANG S X, et al. A quasi-oppositional learning of updating quantum state and Q-learning based on the dung beetle algorithm for global optimization[J]. Alexandria Engineering Journal, 2023, 81: 469-488. DOI: 10.1016/j.aej.2023.09.042.
[11] 潘劲成, 李少波, 周鹏, 等. 改进正弦算法引导的蜣螂优化算法[J]. 计算机工程与应用, 2023, 59(22): 92-110. DOI: 10.3778/j.issn.1002-8331.2305-0021.
[12] 隋东, 杨振宇, 丁松滨, 等. 基于EMSDBO算法的无人机三维航迹规划[J]. 系统工程与电子技术, 2024, 46(5): 1756-1766. DOI: 10.12305/j.issn.1001-506X.2024.05.28.
[13] ZHANG R Z, ZHU Y J, LIU Z S, et al. Aback propagation neural network model for postharvest blueberry shelf-life prediction based on feature selection and dung beetle optimizer[J]. Agriculture, 2023, 13(9): 1784. DOI: 10.3390/agriculture13091784.
[14] WANG C, WANG Z D, HAN Q L, et al. Novel leader-follower-based particle swarm optimizer inspired by multiagent systems: algorithm, experiments, and applications[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(3): 1322-1334. DOI: 10.1109/TSMC.2022.3196853.
[15] XUE J K,SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science and Control Engineering, 2020, 8(1): 22-34. DOI: 10.1080/21642583.2019.1708830.
[16] MIRJALILI S. SCA: a Sine Cosine Algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96: 120-133. DOI: 10.1016/j.knosys.2015.12.022.
[17] KENNEDY J, EBERHART R. Particle swarm optimization[C] // Proceedings of ICNN’95: International Conference on Neural Networks. Piscataway, CA: IEEE, 1995: 1942-1948. DOI: 10.1109/ICNN.1995.488968.
[18] MIRJALILI S, MIRJALILI S M, LEWIS A. Greywolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. DOI: 10.1016/j.advengsoft.2013.12.007.
[19] ZHANG H, LIU Y L, CHAO H. Density peak clustering based on improved dung beetle optimization andmahalanobis metric[J]. Journal of Intelligent & Fuzzy Systems, 2023, 45(4): 6179-6191. DOI: 10.3233/JIFS-232334.
[20] JIN H W, JI H T, YAN F Z. Aneffective obstacle avoidance and motion planning design for underwater telescopic arm robots based on a tent chaotic dung beetle algorithm[J]. Electronics, 2023, 12(19): 4128. DOI: 10.3390/electronics 12194128.
[21] HE D Q, LIU C Y, JIN ZZ, et al. Fault diagnosis of flywheel bearing based on parameter optimization variational mode decomposition energy entropy and deep learning[J]. Energy, 2022, 239(Part B): 122108. DOI: 10.1016/j.energy.2021.122108.
[22] 陈刚, 林东, 陈飞, 等. 基于Logistic回归麻雀算法的图像分割[J]. 北京航空航天大学学报, 2023, 49(3): 636-646. DOI: 10.13700/j.bh.1001-5965.2021.0268.
[1] 郑修斌, 陈珺. 基于蜣螂优化算法的光伏电池参数辨识[J]. 广西师范大学学报(自然科学版), 2024, 42(4): 51-63.
[2] 唐天兵, 李继发, 严毅. 多策略改进的猎人猎物优化算法及其应用[J]. 广西师范大学学报(自然科学版), 2024, 42(4): 153-164.
[3] 许伦辉, 林世城. 基于分治思想的扫地机器人全覆盖路径规划算法研究[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 54-62.
[4] 胡竣涛, 时小虎, 马德印. 基于均值漂移和遗传算法的护工调度算法[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 27-39.
[5] 许伦辉,黄宝山,钟海兴. AGV系统路径规划时间窗模型及算法[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 1-8.
[6] 杨俊瑶, 蒙祖强. 基于时间依赖的物联网络模型的路径规划[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 152-156.
Viewed
Full text
0
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 0


Abstract
4
Just accepted Online first Issue
0 0 4
  From Others
  Times 4
  Rate 100%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发