|
广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (4): 153-164.doi: 10.16088/j.issn.1001-6600.2023100902
唐天兵*, 李继发, 严毅*
TANG Tianbing*, LI Jifa, YAN Yi*
摘要: 针对猎人猎物优化算法易陷入局部最优和收敛精度不足的问题,本文提出多策略改进的猎人猎物优化算法。该算法基于动态搜索思想,通过自适应机制从全局搜索转向局部开发;通过利用种群的历史信息来实施差分进化,从而增强种群的多样性;采用精英池策略和非线性步长相结合的方法,以防止算法陷入局部最优,并提升其收敛精度。在10个大规模(10 000维)测试函数上对改进后的算法和其他6种经典或最新的优化算法进行性能评估,结果显示,该算法在全局优化能力、寻优精度和稳定性方面均表现出色,能有效解决高维优化问题。最后,将多策略改进猎人猎物优化算法应用于三维无人机路径规划问题,仿真实验结果表明,该算法能求解到最优的无人机三维规划路径。
中图分类号: TP301.6
[1] HUANG C W, LI Y X, YAO X. A survey of automatic parameter tuning methods for metaheuristics[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(2): 201-216. DOI: 10.1109/TEVC.2019.2921598. [2] 王鹤静, 王丽娜. 机器人路径规划算法综述[J]. 桂林理工大学学报, 2023, 43(1): 137-147. DOI: 10.3969/j.issn.1674-9057.2023.01.017. [3] 汪涛, 林川, 郭生伟. 基于混合策略改进鲸鱼优化算法的模糊时间序列模型[J]. 电子设计工程, 2023, 31(15): 98-106. DOI: 10.14022/j.issn1674-6236.2023.15.021. [4] 符强, 孔健明, 纪元法, 等. 基于改进粒子群优化PID的双补偿时钟同步算法[J]. 桂林电子科技大学学报, 2023, 43(1): 27-34. DOI: 10.16725/j.cnki.cn45-1351/tn.2023.01.011. [5] WOLPERT D H, MACREADY W G. No free lunch theorems for optimization[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 67-82. DOI: 10.1109/4235.585893. [6] 李洋州, 顾磊. 基于曲线自适应和模拟退火的蝗虫优化算法[J]. 计算机应用研究, 2019, 36(12): 3637-3643. DOI: 10.19734/j.issn.1001-3695.2018.07.0580. [7] 李大海, 詹美欣, 王振东. 求解多峰目标函数的改进阴阳对算法[J]. 计算机应用研究, 2022, 39(5): 1402-1409. DOI: 10.19734/j.issn.1001-3695.2021.11.0465. [8] 逯苗, 何登旭, 曲良东. 非线性参数的精英学习灰狼优化算法[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 55-67. DOI: 10.16088/j.issn.1001-6600.2020093002. [9] 王钦甜, 沈艳军. 多阶段的郊狼优化算法[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 105-117. DOI: 10.16088/j.issn.1001-6600.2022110604. [10] 王喜敏, 袁杰, 寇巧媛. 一种基于多策略的改进黏菌算法[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 98-108. DOI: 10.16088/j.issn.1001-6600.2021122104. [11] PERAZA-VÁZQUEZ H, PEÑA-DELGADO A F, ECHAVARRÍA-CASTILLO G, et al. A bio-inspired method for engineering design optimization inspired by dingoes hunting strategies[J]. Mathematical Problems in Engineering, 2021, 2021: 9107547. DOI: 10.1155/2021/9107547. [12] NARUEI I, KEYNIA F. Wild horse optimizer: a new meta-heuristic algorithm for solving engineering optimization problems[J]. Engineering with Computers, 2022, 38(Suppl 4): 3025-3056. DOI: 10.1007/s00366-021-01438-z. [13] ALSATTAR H A, ZAIDAN A A, ZAIDAN B B. Novel meta-heuristic bald eagle search optimisation algorithm[J]. Artificial Intelligence Review, 2020, 53(3): 2237-2264. DOI: 10.1007/s10462-019-09732-5. [14] NARUEI I, KEYNIA F, SABBAGH MOLAHOSSEINI A. Hunter-prey optimization: algorithm and applications[J]. Soft Computing, 2022, 26(3): 1279-1314. DOI: 10.1007/s00500-021-06401-0. [15] ELSHAHED M, EL-RIFAIE A M, TOLBA M A, et al. An innovative hunter-prey-based optimization for electrically based single-, double-, and triple-diode models of solar photovoltaic systems[J]. Mathematics, 2022, 10(23): 4625. DOI: 10.3390/math10234625. [16] RAMADAN H A, KHAN B, DIAB A A Z. Accurate parameters estimation of three diode model of photovoltaic modules using hunter-prey and wild horse optimizers[J]. IEEE Access, 2022, 10: 87435-87453. DOI: 10.1109/ACCESS.2022.3199001. [17] INKOLLU S R, ANJANEYULU G V P, KOTAIAH N C, et al. An application of hunter-prey optimization for maximizing photovoltaic hosting capacity along with multi-objective optimization in radial distribution network[J]. International Journal of Intelligent Engineering & Systems, 2022, 15(4): 575-584. DOI: 10.22266/ijies2022.0831.52. [18] SHAHEEN A M, EL-SEHIEMY R A, GINIDI A, et al. Optimal allocation of PV-STATCOM devices in distribution systems for energy losses minimization and voltage profile improvement via hunter-prey-based algorithm[J]. Energies, 2023, 16(6): 2790. DOI: 10.3390/en16062790. [19] ALSHAHRANI H J, HASSAN A Q A, TARMISSI K, et al. Hunter prey optimization with hybrid deep learning for fake news detection on Arabic corpus[J]. Computers, Materials & Continua, 2023, 75(2): 4255-4272. DOI: 10.32604/cmc.2023.034821. [20] XIANG C Y, GU J F, LUO J, et al. Structural damage identification based on convolutional neural networks and improved hunter-prey optimization algorithm[J]. Buildings, 2022, 12(9): 1324. DOI: 10.3390/buildings12091324. [21] MA J, LIU F M. Bearing fault diagnosis with variable speed based on fractional hierarchical range entropy and hunter-prey optimization algorithm-optimized random forest[J]. Machines, 2022, 10(9): 763. DOI: 10.3390/machines10090763. [22] 王芬, 杨媛. 基于猎人猎物优化算法求解TSP问题[J]. 宁夏师范学院学报, 2022, 43(7): 59-63, 71. DOI: 10.3969/j.issn.1674-1331.2022.07.008. [23] FU M X, LIU Q. An improved hunter-prey optimization algorithm and its application[C] //2022 IEEE International Conference on Networking, Sensing and Control (ICNSC). Piscataway, NJ: IEEE, 2022: 1-7. DOI: 10.1109/ICNSC55942.2022.10004114. [24] ABDELATY A M, YOUSRI D, CHELLOUG S, et al. Fractional order adaptive hunter-prey optimizer for feature selection[J]. Alexandria Engineering Journal, 2023, 75: 531-547. DOI: 10.1016/j.aej.2023.05.092. [25] KHADIDOS A O, ALKUBAISY Z M, KHADIDOS A O, et al. Binary hunter-prey optimization with machine learning: based cybersecurity solution on internet of things environment[J]. Sensors, 2023, 23(16): 7207. DOI: 10.3390/s23167207. [26] HASSAN M H, DAQAQ F, KAMEL S, et al. An enhanced hunter-prey optimization for optimal power flow with FACTS devices and wind power integration[J]. IET Generation, Transmission & Distribution, 2023, 17(14): 3115-3139. DOI: 10.1049/gtd2.12879. [27] 常耀华, 韦根原. 基于领导者竞争策略的改进猎人猎物优化算法[J]. 计算机应用研究, 2024, 41(1): 142-149. DOI: 10.19734/j.issn.1001-3695.2023.05.0222. [28] 鲁英达,张菁.基于改进猎人猎物算法的VMD-KELM短期负荷预测[J]. 电气工程学报, 2023, 18(4): 228-238. DOI: 10.11985/2023.04.025. [29] 华罗庚, 王元. 数论在近代分析中的应用[M]. 北京: 科学出版社, 1978: 1-99. [30] HARIFI S, MOHAMMADZADEH J, KHALILIAN M, et al. Giza pyramids construction: an ancient-inspired metaheuristic algorithm for optimization[J]. Evolutionary Itelligence, 2021, 14(4): 1743-1761. DOI: 10.1007/s12065-020-00451-3. [31] FARAMARZI A, HEIDARINEJAD M, STEPHENS B, et al. Equilibrium optimizer: a novel optimization algorithm[J]. Knowledge-Based Systems, 2020, 191: 105190. DOI: 10.1016/j.knosys.2019.105190. [32] 李克文, 梁永琪, 李绍辉. 基于混合策略改进的花朵授粉算法[J]. 计算机应用研究, 2022, 39(2): 361-366. DOI: 10.19734/j.issn.1001-3695.2021.08.0311. [33] STORN R, PRICE K.Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of global optimization, 1997,11(4): 341-359. DOI: 10.1023/A:1008202821328. [34] SAREMI S, MIRJALILI S, LEWIS A. Grasshopper optimisation algorithm: theory and application[J]. Advances in Engineering Software, 2017, 105: 30-47. DOI: 10.1016/j.advengsoft.2017.01.004. [35] 李煜, 尚志勇, 刘景森. 求解函数优化问题的改进布谷鸟搜索算法[J]. 计算机科学, 2020, 47(1): 219-230. DOI: 10.11896/jsjkx.181102165. [36] YAO X, LIU Y, LIN G M. Evolutionary programming made faster[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(2): 82-102. DOI: 10.1109/4235.771163. |
[1] | 许伦辉, 林世城. 基于分治思想的扫地机器人全覆盖路径规划算法研究[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 54-62. |
[2] | 胡竣涛, 时小虎, 马德印. 基于均值漂移和遗传算法的护工调度算法[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 27-39. |
[3] | 许伦辉,黄宝山,钟海兴. AGV系统路径规划时间窗模型及算法[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 1-8. |
[4] | 吕攀龙, 翁小雄, 彭新建. 基于差分进化算法SVM的公交通勤乘客识别[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 106-114. |
[5] | 杨俊瑶, 蒙祖强. 基于时间依赖的物联网络模型的路径规划[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 152-156. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |