广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (4): 165-171.doi: 10.16088/j.issn.1001-6600.2023080802

• 研究论文 • 上一篇    下一篇

牧食和竞争对入侵种粉绿狐尾藻入侵能力的影响

董蕾1,2,3, 姜勇1,2*, 梁士楚1,2, 原丽格3,4,5, 李峰3,4, 余炜诚3,4   

  1. 1.珍稀濒危动植物生态与环境保护教育部重点实验室(广西师范大学),广西 桂林 541006;
    2.广西师范大学 生命科学学院,广西 桂林 541006;
    3.中国科学院亚热带农业生态研究所 亚热带地区农业生态过程重点实验室,湖南 长沙 410125;
    4.中国科学院亚热带农业生态研究所 洞庭湖湿地生态系统观测研究站,湖南 长沙 410125;
    5.中国科学院大学,北京 100049
  • 收稿日期:2023-08-08 修回日期:2023-09-26 出版日期:2024-07-25 发布日期:2024-09-05
  • 通讯作者: 姜勇(1981—),女,广西桂林人,广西师范大学副教授,博士。E-mail:yongjiang226@126.com
  • 基金资助:
    国家重点研发计划课题(2022YFC3204103); 国家自然科学基金面上项目(42171062); 湖南省杰出青年基金项目(2022JJ10055); 湖南省重点研发项目(2022NK2058, 2022NK2059)

Effects of Herbivory and Competition on the Invasive Ability of Alien Species Myriophyllum aquaticum

DONG Lei1,2,3, JIANG Yong1,2*, LIANG Shichu1,2, YUAN Lige3,4,5, LI Feng3,4, YU Weicheng3,4   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environment Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. College of Life Sciences, Guangxi Normal University, Guilin Guangxi 541006, China;
    3. Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha Hunan 410125, China;
    4. Key Laboratory of Agro-Ecological Processes in Subtropical Region, Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha Hunan 410125, China;
    5. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2023-08-08 Revised:2023-09-26 Online:2024-07-25 Published:2024-09-05

摘要: 本文以入侵种粉绿狐尾藻Myriophyllum aquaticum为目标植物,探讨苦草Vallisneria natans竞争和福寿螺Pomacea canaliculata牧食及二者交互作用对粉绿狐尾藻入侵的影响,结果表明:1)福寿螺牧食和苦草竞争均会显著降低粉绿狐尾藻的株高和生物量,抑制粉绿狐尾藻的生长;2)与对照相比,福寿螺牧食和苦草竞争共同处理时粉绿狐尾藻的生物量和株高显著降低,牧食和竞争的共同干扰增强了对粉绿狐尾藻的抑制,但两因素间无显著交互作用;3)在竞争和牧食共同影响下,不同福寿螺牧食强度处理间粉绿狐尾藻的对数响应比(ln RR)均为负值,表明苦草对粉绿狐尾藻生长的抑制大于福寿螺牧食。因此,在水体生态系统恢复过程中可以利用苦草的合理密植控制粉绿狐尾藻的入侵。

关键词: 生物入侵, 粉绿狐尾藻, 福寿螺, 牧食, 竞争

Abstract: In this paper, the invasive plant Myriophyllum aquaticum was taken as the target plant, and the interference factors were set with the competition of Vallisneria natans and the herbivory of Pomacea canaliculata to explore the effects of herbivory of P. canaliculata and competition of V. natans on the invasion of M. aquaticum. The results showed as follows: (1) The plant height and biomass of M. aquaticum were significantly decreased by P. canaliculata herbivory and V. natans competition, and the growth of M. aquaticum was inhibited. (2) Compared with the control, the biomass and plant height of M. aquaticum were significantly reduced under the combined treatment of herbivory of P. canaliculata and competition of V. natans. The superposition of these two factors enhanced the inhibition of M. aquaticum, but there was no significant interaction between herbivory and competition. (3) Under the combined influence of competition and herbivory, the logarithmic response ratio (ln RR) of M. aquaticum was not significantly different among different herbivory densities of P. canaliculata, and all were negative, indicating that V. natans inhibited the growth of M. aquaticum than that of P. canaliculata herbivory. Therefore, in the future water ecosystem restoration, the reasonable dense planting of V. natans can be used to control the invasion of M. aquaticum.

Key words: biological invasion, Myriophyllum aquaticum, Pomacea canaliculata, herbivory, competition

中图分类号:  Q948

[1] 冼晓青, 王瑞, 陈宝雄, 等. “世界100种恶性外来入侵物种”在我国大陆的入侵现状[J]. 生物安全学报, 2022, 31(1): 9-16. DOI: 10.3969/j.issn.2095-1787.2022.01.002.
[2] PYŠEK P, HULME P E, SIMBERLOFF D, et al. Scientists' warning on invasive alien species[J]. Biological Reviews, 2020, 732: 138677. DOI: 10.1111/brv.12627.
[3] MAGLIOZZI C, TSIAMIS K, VIGIAK O, et al. Assessing invasive alien species in European catchments: Distribution and impacts[J]. Science of the Total Environment, 2020, 732: 138677. DOI: 10.1016/j.scitotenv.2020.138677.
[4] GALLARDO B, CLAVERO M, SÁNCHEZ M I, et al. Global ecological impacts of invasive species in aquatic ecosystems[J]. Global Change Biology, 2016, 22(1): 151-163. DOI: 10.1111/gcb.13004.
[5] ZHOU J, PAN X, XU H T, et al. Invasive Eichhornia crassipes affects the capacity of submerged macrophytes to utilize nutrients[J]. Sustainability, 2017, 9(4): 565. DOI: 10.3390/su9040565.
[6] 南倩茹, 张晴, 张劲, 等. 撂荒地喜旱莲子草入侵群落特征与种间联结研究[J]. 长江流域资源与环境, 2023, 32(2): 427-439. DOI: 10.11870/cjlyzyyhj202302018.
[7] 丁瑜欣, 吴娟, 成水平. 水盾草入侵机制及防治对策[J]. 生物安全学报, 2020, 29(3): 176-180, 190. DOI: 10.3969/j.issn.2095-1787.2020.03.004.
[8] 赵本良, 章家恩, 戴晓燕, 等. 福寿螺对稻田水生植物群落结构的影响[J]. 生态学报, 2014, 34(4): 907-915. DOI: 10.5846/stxb201304030601.
[9] KOUBA A, OFICIALDEGUI F J, CUTHBERT R N, et al. Identifying economic costs and knowledge gaps of invasive aquatic crustaceans[J]. Science of the Total Environment, 2021, 813: 152325. DOI: 10.1016/j.scitotenv.2021.152325.
[10] 杜元宝, 涂炜山, 杨乐, 等. 外来入侵脊椎动物对生物多样性危害的研究进展[J]. 中国科学: 生命科学, 2023, 53(7): 1035-1054. DOI: 10.1360/SSV-2022-0033.
[11] 侯志勇, 谢永宏, 陈心胜, 等. 洞庭湖湿地的外来入侵植物研究[J]. 农业现代化研究, 2011, 32(6): 744-747. DOI: 10. 3969/j.issn.1000-0275.2011.06.023.
[12] 谢洪民. 环太湖地区水生植物多样性和入侵植物凤眼蓝水位响应实验研究[D]. 上海: 上海海洋大学, 2021.
[13] BRAGA R R, RIBEIRO V M, PADIAL A A, et al. Invasional meltdown: an experimental test and a framework to distinguish synergistic, additive, and antagonistic effects[J]. Hydrobiologia, 2019, 847(7): 1603-1618. DOI: 10.1007/s10750-019-04107-x.
[14] ACKERMAN J D, FALCÓN W, MOLINARI J, et al. Biotic resistance and invasional meltdown: consequences of acquired interspecific interactions for an invasive orchid, Spathoglottis plicata in Puerto Rico[J]. Biological Invasions, 2014, 16(11): 2435-2447. DOI: 10.1007/s10530-014-0676-3.
[15] ZHANG X L, YU H W, YU H H, et al. Highly competitive native aquatic species could suppress the growth of invasive aquatic species with similar traits[J]. Biological Invasions, 2021, 23(1): 267-280. DOI: 10.1007/s10530-020-02370-x.
[16] 和兰娣, 瞿鹏, 武千年, 等. 昆明市外来入侵物种现状及防控对策[J]. 环境保护科学, 2024, 50(1): 34-43. DOI: 10.16803/j.cnki.issn.1004-6216.202212043.
[17] 孙丽君, 杨振治, 郭佩琴, 等. 不同光照强度下物种组合对沉水植物苦草种间关系的影响[J]. 热带亚热带植物学报, 2023, 31(3): 325-333. DOI: 10.11926/jtsb.4586.
[18] YAN Y M, ODUOR A M O, LI F, et al. Opposite effects of nutrient enrichment and an invasive snail on the growth of invasive and native macrophytes[J]. Ecological Applications, 2024, 34(1): e2737. DOI: 10.1002/eap.2737.
[19] HEDGES L V, GUREVITCH J, CURTIS P S. The meta-analysis of response ratios in experimental ecology[J]. Ecology, 1999, 80(4): 1150-1156. DOI: 10.1890/0012-9658(1999)080[1150:TMAORR] 2.0.CO;2.
[20] ROSSIGNAUD L, KIMBERLEY M O, KELLY D, et al. Effects of competition and habitat heterogeneity on native-exotic plant richness relationships across spatial scales[J]. Diversity and Distributions, 2022, 28(5): 1093-1104. DOI: 10.1111/ddi.13516.
[21] 李慧燕, 陈冬青, 王慧, 等. 不同混种密度下杀真菌剂对黄顶菊与反枝苋种间竞争的影响[J]. 生态学杂志, 2015, 34(4): 1013-1018. DOI: 10.13292/j.1000-4890.20150304.023.
[22] KEMPEL A, CHROBOCK T, FISCHER M, et al. Determinants of plant establishment success in a multispecies introduction experiment with native and Alien species[J]. Proceedings of the National Academy of Sciences of the United State of America, 2013, 110(31): 12727-12732. DOI: 10.1073/pnas.1300481110.
[23] SANTAMARíA J, TOMAS F, BALLESTEROS E, et al. The role of competition and herbivory in biotic resistance against invaders: a synergistic effect[J]. Ecology, 2021, 102(9): e03440. DOI: 10.1002/ecy.3440.
[24] CHESSON P, KUANG J J. The interaction between predation and competition[J]. Nature, 2008, 456(7219): 235-238. DOI: 10.1038/nature07248.
[25] PARKER J D, BURKEPILE D E, HAY M E. Opposing effects of native and exotic herbivores on plant invasions[J]. Science, 2006, 311(5766): 1459-1461. DOI: 10.1126/science.1121407.
[26] ZHANG X L, YU H H, LV T, et al. Effects of different scenarios of temperature rise and biological control agents on interactions between two noxious invasive plants[J]. Diversity and Distributions, 2021, 27(12): 2300-2314. DOI: 10.1111/ddi.13406.
[27] LACH L, BRITTON D K, RUNDELL R J, et al. Food preference and reproductive plasticity in an invasive freshwater snail[J]. Biological Invasions, 2000, 2(4): 279-288. DOI: 10.1023/A:1011461029986.
[28] PETIT BON M, GUNNARSDOTTER INGA K, JÓNSDÓTTIR I S, et al. Interactions between winter and summer herbivory affect spatial and temporal plant nutrient dynamics in tundra grassland communities[J]. Oikos, 2020, 129(8): 1229-1242. DOI: 10.1111/oik.07074.
[29] 李宽意, 李艳敏, 刘正文. 叶片损害强度与基质营养水平对苦草补偿性生长的影响[J]. 应用生态学报, 2008, 19(11): 2369-2374.
[30] DAVIDSON A M, JENNIONS M, NICOTRA A B. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis[J]. Ecology Letters, 2011, 14(4): 419-431. DOI: 10.1111/j.1461-0248.2011.01596x.
[31] 刘艳杰, 黄伟, 杨强, 等. 近十年植物入侵生态学重要研究进展[J]. 生物多样性, 2022, 30(10): 22438. DOI: 10.17520/biods.2022438.
[32] RASMANN S. As above so below: recent and future advances in plant-mediated above-and belowground interactions[J]. American Journal of Botany, 2022, 109(5): 672-675. DOI: 10.1002/ajb2.1845.
[33] 黄庆荣, 施逸啸, 江蓝, 等. 格氏栲天然林植物功能性状与系统发育对林窗大小的响应[J]. 森林与环境学报, 2023, 43(5): 449-456. DOI: 10.13324/j.cnki.jfcf.2023.05.001.
[34] 郑彤, 周启星, 欧阳少虎. 植物-微生物共生系统功能强化及其在降污固碳中的作用[J]. 科学通报, 2023, 68(24): 3155-3171. DOI: 10.1360/TB-2023-0475.
[35] 易灵心. 肉牛放牧对盐化草甸植被结构与功能的影响[D]. 兰州: 兰州大学, 2023. DOI: 10.27204/d.cnki.glzhu.2023.003057.
[36] 武麟. 典型草原植物氮素分配和氮磷含量季节动态及其对放牧的响应[D]. 呼和浩特: 内蒙古大学, 2022.
[37] ZHANG B, LIU X, DEANGELIS D L, et al. Modeling the compensatory response of an invasive tree to specialist insect herbivory[J]. Biological Control, 2018, 117: 128-136. DOI: 10.1016/j.biocontrol.2017.11.002.
[38] 俞新慧, 吴晓东, 葛绪广, 等. 收割强度对粉绿狐尾藻生长和水质的影响[J]. 水生态学杂志, 2022, 43(1): 95-102. DOI: 10.15928/j.1674-3075.202004040091.
[1] 朱艳, 蔡静, 龙芳. 逐步Ⅰ型混合截尾下复合Rayleigh分布竞争失效产品部分步加寿命试验的统计分析[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 159-169.
[2] 周子豪, 刘禹含, 谭艳红, 蒙玉清, 巫虹颖, 黄锦龙, 武正军. 酶法制备福寿螺内脏团抗菌肽[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 154-161.
[3] 郑涛, 周欣然, 张龙. 三种群捕食-竞争-合作混杂模型的全局渐近稳定性[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 64-70.
[4] 王涛, 马川. 基于Pi演算的Android多线程程序的数据竞争检测[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 29-42.
[5] 梁碧霞,黄锦龙,韩丽霞,武正军. 桂林地区福寿螺冬季繁殖力研究[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 166-173.
[6] 苗新艳, 张龙, 罗颜涛, 潘丽君. 一类交替变化的竞争—合作混杂种群模型研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 25-31.
[7] 陈泽柠, 罗雪梅, 廖娴, 陈郭燕, 武正军. 氯化钙对福寿螺卵块的杀灭作用[J]. 广西师范大学学报(自然科学版), 2016, 34(1): 156-161.
[8] 陆舟, 杨岗, 舒晓莲, 余桂东, 周放. 弄岗穗鹛与短尾鹪鹛冬季取食空间生态位比较[J]. 广西师范大学学报(自然科学版), 2015, 33(4): 120-126.
[9] 段琳琳, 梁士楚, 李富荣, 周巧劲. 互花米草与3种本地红树植物叶片化感潜力比较[J]. 广西师范大学学报(自然科学版), 2015, 33(2): 109-114.
[10] 于海东, 罗云峰. 竞争情报系统质量控制的实施:Nash均衡与甄别[J]. 广西师范大学学报(自然科学版), 2013, 31(4): 28-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵洁, 宋爽, 武斌. 图像USM锐化取证与反取证技术综述[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 1 -16 .
[2] 艾聪聪, 龚国利, 焦小雨, 田露, 盖中朝, 缑敬轩, 李慧. 毕赤酵母作为基础研究的新兴模式生物研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 17 -26 .
[3] 翟言豪, 王燕舞, 李强, 李景坤. 基于CiteSpace的三维荧光光谱技术对内陆水体中溶解性有机质研究的进展[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 34 -46 .
[4] 陈丽, 唐明珠, 郭胜辉. 智能汽车信息物理系统状态估计与执行器攻击重构[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 59 -69 .
[5] 李成乾, 石晨, 邓敏艺. 基于元胞自动机的Brugada综合征患者心电信号研究[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 86 -98 .
[6] 吕辉, 吕卫峰. 基于改进YOLOv5的眼底出血点检测算法[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 99 -107 .
[7] 易见兵, 彭鑫, 曹锋, 李俊, 谢唯嘉. 多尺度特征融合的点云配准算法研究[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 108 -120 .
[8] 李莉, 李昊泽, 李涛. 基于Raft的多主节点拜占庭容错共识机制[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 121 -130 .
[9] 赵小梅, 丁勇, 王海涛. 基于改进帝王蝶算法的最大似然DOA估计[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 131 -140 .
[10] 朱艳, 蔡静, 龙芳. 逐步Ⅰ型混合截尾下复合Rayleigh分布竞争失效产品部分步加寿命试验的统计分析[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 159 -169 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发