|
广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (3): 86-98.doi: 10.16088/j.issn.1001-6600.2023062102
李成乾, 石晨, 邓敏艺*
LI Chengqian, SHI Chen, DENG Minyi*
摘要: 针对Brugada综合征(Brugada syndrome, BrS)患者的症状发展与其异常CV(conduction velocity, CV)恢复和异常APD(action potential duration, APD)恢复之间的联系仍未明确问题,本文采用元胞自动机模型对其进行研究。首先根据BrS患者心电信号的特点对元胞自动机模型进行量纲化处理,并在模型中考虑CV恢复和APD恢复;然后使用该模型数值模拟不同CV恢复及APD恢复下与心动过速对应的心电信号螺旋波态的演化行为。结果表明:只存在CV恢复时,心动过速只会维持,不会恶化;在CV恢复和无记忆APD恢复共同影响下,心动过速可能消失,也可能转化为心室颤动,其中转化为心室颤动的概率为54%,明显高于临床数据;在CV恢复和带记忆APD恢复共同影响下,心动过速可能消失、维持或转化为心室颤动,其中转化为心室颤动的概率约为35%,与临床数据一致。跟踪观察波头附近的心电信号传导情况,发现BrS患者的症状发展与CV恢复或APD恢复导致的电信号传导阻滞有关,传导阻滞的程度越严重,BrS患者就越容易由心动过速发展为心室颤动。记忆性APD恢复因其记忆效应能降低APD的振荡幅度,所以能降低心室颤动的发生率。
中图分类号: TN911.7;R541.7
[1] BRUGADA P, BRUGADA J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report[J]. Journal of the American College of Cardiology, 1992, 20(6): 1391-1396. DOI: 10.1016/0735-1097(92)90253-j. [2] ANTZELEVITCH C, BRUGADA P, BORGGREFE M, et al. Brugada syndrome: report of the second consensus conference[J]. Heart Rhythm, 2005, 2(4): 429-440. DOI: 10.1016/j.hrthm.2005.01.005. [3] KOCABAS U, HASDEMIR C, KAYA E, et al. Brugada syndrome, Brugada phenocopy or none?[J]. Annals of Noninvasive Electrocardiology, 2017, 22(6): e12470. DOI: 10.1111/anec.12470. [4] PROBST V, VELTMANN C, ECKARDT L, et al. Long-term prognosis of patients diagnosed with Brugada syndrome: results from the FINGER Brugada Syndrome Registry[J]. Circulation, 2010, 121(5): 635-643. DOI: 10.1161/CIRCULATIONAHA.109.887026. [5] SATISH H, REDDY M R. Reentry in cardiac ventricular epicardial tissue due to SCN5A L812Q gene mutation: a computational study[J]. Biomedical Physics & Engineering Express, 2022, 8(3): 10. DOI: 10.1088/2057-1976/ac605c. [6] LANDAW J, YUAN X P, CHEN P S, et al. The transient outward potassium current plays a key role in spiral wave breakup in ventricular tissue[J]. American Journal of Physiology. Heart and Circulatory Physiology, 2021, 320(2): H826-H837. DOI: 10.1152/ajpheart.00608.2020. [7] ASHINO S, WATANABE I, KOFUNE M, et al. Effects of quinidine on the action potential duration restitution property in the right ventricular outflow tract in patients with Brugada syndrome[J]. Circulation Journal, 2011, 75(9): 2080-2086. DOI: 10.1253/circj.cj-11-0227. [8] HALPERIN L, MELLOR G, TALAJIC M, et al. Quinidine effective for the management of ventricular and atrial arrhythmias associated with Brugada syndrome[J]. HeartRhythm Case Reports, 2018, 4(7): 270-272. DOI: 10.1016/j.hrcr.2018.01.008. [9] BRUGADA R, BRUGADA J, ANTZELEVITCH C, et al. Sodium channel blockers identify risk for sudden death in patients with ST-segment elevation and right bundle branch block but structurally normal hearts[J]. Circulation, 2000, 101(5): 510-515. DOI: 10.1161/01.cir.101.5.510. [10] SCHEIRLYNCK E, CHIVULESCU M, LIE Ø H, et al. Worse prognosis in Brugada syndrome patients with arrhythmogenic cardiomyopathy features[J]. JACC: Clinical Electrophysiology, 2020, 6(11): 1353-1363. DOI: 10.1016/j.jacep.2020.05.026. [11] ANTZELEVITCH C, YAN G X. Cellular and Ionic mechanisms responsible for the Brugada syndrome[J]. Journal of Electrocardiology, 2000, 33(Supplement 1): 33-39. DOI: 10.1054/jelc.2000.20321. [12] ZHU J F, SHEN Y, XIONG H B, et al. Identification of a novel missense SCN5A mutation in a Chinese Han family with Brugada syndrome[J]. Biochemical and Biophysical Research Communications, 2023, 649: 55-61. DOI: 10.1016/j.bbrc.2023.01.026. [13] ANTZELEVITCH C. Heterogeneity and cardiac arrhythmias: an overview[J]. Heart Rhythm, 2007, 4(7): 964-972. DOI: 10.1016/j.hrthm.2007.03.036. [14] NARAYAN S M, KIM J, TATE C, et al. Steep restitution of ventricular action potential duration and conduction slowing in human Brugada syndrome[J]. Heart Rhythm, 2007, 4(8): 1087-1089. DOI: 10.1016/j.hrthm.2007.04.018. [15] FINLAY M, BHAR-AMATO J, NG K E, et al. Autonomic modulation of the electrical substrate in mice haploinsufficient for cardiac sodium channels: a model of the Brugada syndrome[J]. American Journal of Physiology. Cell Physiology, 2019, 317(3): C576-C583. DOI: 10.1152/ajpcell.00028.2019. [16] POSTEMA P G, VAN DESSEL P F H M, DE BAKKER J M T, et al. Slow and discontinuous conduction conspire in Brugada syndrome: a right ventricular mapping and stimulation study[J]. Circulation: Arrhythmia and Electrophysiology, 2008, 1(5): 379-386. DOI: 10.1161/CIRCEP.108.790543. [17] CORONEL R, CASINI S, KOOPMANN T T, et al. Right ventricular fibrosis and conduction delay in a patient with clinical signs of Brugada syndrome: a combined electrophysiological, genetic, histopathologic, and computational study[J]. Circulation, 2005, 112(18): 2769-2777. DOI: 10.1161/CIRCULATIONAHA.105.532614. [18] WOLFRAM S. Statistical mechanics of cellular automata[J]. Reviews of Modern Physics, 1983, 55(3): 601-644. DOI: 10.1103/RevModPhys.55.601. [19] 邝先验,陈自如.考虑礼让行人的交叉口机非混合交通流模型[J].广西师范大学学报(自然科学版),2019,37(4):1-15. DOI: 10.16088/j.issn.1001-6600.2019.04.001. [20] WANG F H, LI L Y, LIU Y T, et al. One-dimensional cellular automaton traffic flow model based on defensive driving strategy[J]. International Journal of Crashworthiness, 2022, 27(1): 193-197. DOI: 10.1080/13588265.2020.1785091. [21] KUANG X Y, CHEN Z R. Trajectory research of Cellular Automaton Model based on real driving behaviour[J]. Physica A: Statistical Mechanics and Its Applications, 2022, 602: 127610. DOI: 10.1016/j.physa.2022.127610. [22] LI Y X, YANG XX, MENG M, et al. Pedestrian evacuation simulation in multi-exit case: an emotion and group dual-driven method[J]. Chinese Physics B, 2023, 32(4): 048901. DOI: 10.1088/1674-1056/ac9609. [23] 张琦,渠静.基于前摄效应的不耐烦行为建模与双向行人流动态[J].物理学报,2022,71(7):070502. DOI: 10.7498/aps.71.20211537. [24] ZHANG Y X, LI W, RUI Y, et al. A modified cellular automaton model of pedestrian evacuation in a tunnel fire[J]. Tunnelling and Underground Space Technology, 2022, 130: 104673. DOI: 10.1016/j.tust.2022.104673. [25] WANG G N, CHEN T, CHEN J W, et al. Simulation of crowd dynamics in pedestrian evacuation concerning panic contagion: a cellular automaton approach[J]. Chinese Physics B, 2022, 31(6): 060402. DOI: 10.1088/1674-1056/ac4a66. [26] NAGARAJU K, SUDEEP K S, KURHEKAR M P. A cellular automaton model to find the risk of developing autism through gut-mediated effects[J]. Computers in Biology and Medicine, 2019, 110: 207-217. DOI: 10.1016/j.compbiomed.2019.05.015. [27] VENUGOPAL N, MARI K, MANIKANDAN G, et al. Phase quantized polar transformative with cellular automaton for early glaucoma detection[J]. Ain Shams Engineering Journal, 2021, 12(4): 4145-4155. DOI: 10.1016/j.asej.2021.04.018. [28] VALENTIM C A, RABI J A, DAVID S A. Cellular-automaton model for tumor growth dynamics: Virtualization of different scenarios[J]. Computers in Biology and Medicine, 2023, 153: 106481. DOI: 10.1016/j.compbiomed.2022.106481. [29] PARK A, RAWLE R J. Kinetic and cellular automaton models of west Nile virus hemifusion[J]. Biophysical Journa, 2020, 118(3): 553A. DOI: 10.1016/j.bpj.2019.11.3024. [30] 师伟展,邝华,白克钊,等.固执者对舆论传播动力学的影响研究[J].广西师范大学学报(自然科学版),2014,32(3):22-26. DOI: 10.3969/j.issn.1001-6600.2014.03.004. [31] CHEN H Z, SONG Y H, LIU D. Research on cellular automata network public opinion transmission model based on combustion theory[J]. Journal of Physics: Conference Series, 2020, 1544(1): 012131. DOI: 10.1088/1742-6596/1544/1/012131. [32] YU Y F, LI Y, LIN F, et al. A multi-grid Cellular Automaton model for simulating dendrite growth and its application in additive manufacturing[J]. Additive Manufacturing, 2021, 47: 102284. DOI: 10.1016/j.addma.2021.102284. [33] OGAWA J, NATSUME Y. Three-dimensional large-scale grain growth simulation using a cellular automaton model[J]. Computational Materials Science, 2021, 199: 110729. DOI: 10.1016/j.commatsci.2021.110729. [34] 张学良,谭惠丽,白克钊,等.一种体现心肌细胞传导记忆的元胞自动机模型[J].广西师范大学学报(自然科学版),2017,35(4):1-9. DOI: 10.16088/j.issn.1001-6600.2017.04.001. [35] 关富荣,李成乾,邓敏艺.动作电位动态变化对螺旋波演化行为的影响[J].物理学报,2022,71(11):110502. DOI: 10.7498/aps.71.20220021. [36] MOE G K, RHEINBOLDT W C, ABILDSKOV J A. A computer model of atrial fibrillation[J]. American Heart Journal, 1964, 67(2): 200-220. DOI: 10.1016/0002-8703(64)90371-0. [37] 余承高,白融,陈栋梁,等.心脏电生理学基础与临床[M].武汉:华中科技大学出版社,2008:17. [38] DE LANGE E, KUCERA J P. Alternans resonance and propagation block during supernormal conduction in cardiac tissue with decreased [K+]o[J]. Biophysical Journal, 2010, 98(7): 1129-1138. DOI: 10.1016/j.bpj.2009.12.4280. [39] BIASCI V, SACCONI L, CYTRYNBAUM E N, et al. Universal mechanisms for self-termination of rapid cardiac rhythm[J]. Chaos, 2020, 30(12): 121107. DOI: 10.1063/5.0033813. [40] WEBER F M, LUIK A, SCHILLING C, et al. Conduction velocity restitution of the human atrium--an efficient measurement protocol for clinical electrophysiological studies[J]. IEEE Transactions on Bio-medical Engineering, 2011, 58(9): 2648-2655. DOI: 10.1109/TBME.2011.2160453. [41] SHRIER A, DUBARSKY H, ROSENGARTEN M, et al. Prediction of complex atrioventricular conduction rhythms in humans with use of the atrioventricular nodal recovery curve[J]. Circulation, 1987, 76(6): 1196-1205. DOI: 10.1161/01.cir.76.6.1196. [42] SHATTOCK M J, PARK K C, YANG H Y, et al. Restitution slope is principally determined by steady-state action potential duration[J]. Cardiovascular Research, 2017, 113(7): 817-828. DOI: 10.1093/cvr/cvx063. [43] LIN Y T, CHANG E T Y, EATOCK J, et al. Mechanisms of stochastic onset and termination of atrial fibrillation studied with a cellular automaton model[J]. Journal of the Royal Society Interface, 2017, 14(128): 20160968. DOI: 10.1098/rsif.2016.0968. [44] ISSA Z F,MILLER J M,ZIPES D P.临床心律失常与电生理学:《Braunwald心脏病学》姊妹卷[M].吴永全,张树龙,译.北京:北京大学医学出版社,2014:4,490. [45] CALLAWAY C W, MENEGAZZI J J. Waveform analysis of ventricular fibrillation to predict defibrillation[J]. Current Opinion in Critical Care, 2005, 11(3): 192-199. DOI: 10.1097/01.ccx.0000161725.71211.42. [46] INDIK J H, DONNERSTEIN R L, BERG R A, et al. Ventricular fibrillation frequency characteristics are altered in acute myocardial infarction[J]. Critical Care Medicine, 2007, 35(4): 1133-1138. DOI: 10.1097/01.CCM.0000259540.52062.99. [47] AVULA U M R, ABRAMS J, KATCHMAN A, et al. Heterogeneity of the action potential duration is required for sustained atrial fibrillation[J]. JCI Insight, 2019, 5(11): 128765. DOI: 10.1172/jci.insight.128765. [48] SORGENTE A, JOSEPHSON M E. Don’t forget the memory: contribution of the T wave vector in localizing the site of origin of a monomorphic idiopathic ventricular tachycardia[J]. Journal of Cardiology Cases, 2012, 5(1): e28-e31. DOI: 10.1016/j.jccase.2011.09.003. [49] JING L Y, CHOURASIA S, PATWARDHAN A. Heterogeneous memory in restitution of action potential duration in pig ventricles[J]. Journal of Electrocardiology, 2010, 43(5): 425-432. DOI: 10.1016/j.jelectrocard.2010.02.006. [50] IDEKER R E, ROGERS J M, GRAY R A. Steepness of the restitution curve: a slippery slope?[J]. Journal of Cardiovascular Electrophysiology, 2002, 13(11): 1173-1175. DOI: 10.1046/j.1540-8167.2002.01173.x. |
[1] | 邝先验, 陈自如. 考虑礼让行人的交叉口机非混合交通流模型[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 1-15. |
[2] | 张学良,谭惠丽,白克钊,唐国宁,邓敏艺. 一种体现心肌细胞传导记忆的元胞自动机模型[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 1-9. |
[3] | 黄雯, 谭惠丽. 心脏记忆对螺旋波动力学的影响[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 1-8. |
[4] | 戴静娱, 张学良, 邓敏艺, 谭惠丽. 位置扰动对激发介质中螺旋波动力学行为的影响[J]. 广西师范大学学报(自然科学版), 2016, 34(2): 8-14. |
[5] | 蔡美静, 邝华, 白克钊, 陈若航. 电影厅内部布局及出口位置对疏散效率的影响[J]. 广西师范大学学报(自然科学版), 2015, 33(3): 1-6. |
[6] | 邝先验, 吴赟, 曹韦华, 吴银凤. 城市混合非机动车流的元胞自动机仿真模型[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 7-14. |
[7] | 师伟展, 邝华, 白克钊, 孔令江. 固执者对舆论传播动力学的影响研究[J]. 广西师范大学学报(自然科学版), 2014, 32(3): 22-26. |
[8] | 许钢, 刘海燕, 张超英, 梁振燕. 基于元胞自动机的建构主义理论应用模拟[J]. 广西师范大学学报(自然科学版), 2013, 31(4): 7-12. |
[9] | 邓敏艺, 谭惠丽. 一个双变量元胞自动机模型的定性研究[J]. 广西师范大学学报(自然科学版), 2013, 31(2): 1-6. |
[10] | 余艳, 白克钊, 孔令江. 行人与机动车相互干扰的元胞自动机模拟研究[J]. 广西师范大学学报(自然科学版), 2013, 31(1): 6-10. |
[11] | 翟莹, 易忠, 谢正卫, 邓培民, 李王月. 一类特殊规则的二维混合元胞自动机的GOE问题[J]. 广西师范大学学报(自然科学版), 2013, 31(1): 37-43. |
[12] | 覃松, 邓敏艺, 孔令江. 融资融券影响的元胞自动机股票市场模拟研究[J]. 广西师范大学学报(自然科学版), 2011, 29(4): 12-15. |
[13] | 潘江洪, 白克钊, 邝华, 孔令江. 一种考虑能见度影响的元胞自动机交通流模型[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 1-4. |
[14] | 陈永淇, 白克钊, 邝华, 孔令江, 刘慕仁. 教室内布局对人员疏散影响的研究[J]. 广西师范大学学报(自然科学版), 2011, 29(1): 1-4. |
[15] | 刘海燕, 张超英, 梁振燕, 杨上元. 基于元胞自动机的学习者行为模拟[J]. 广西师范大学学报(自然科学版), 2010, 28(4): 1-4. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |