|
广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (3): 99-107.doi: 10.16088/j.issn.1001-6600.2023053101
吕辉*, 吕卫峰
LÜ Hui*, LÜ Weifeng
摘要: 糖尿病视网膜病变眼底图像中出血点病灶尺寸小且分布密集,导致现有算法难以实现该病灶的精确检测及定位。本文提出一种RCA-YOLO出血病灶检测算法,算法在YOLOv5s基础上,首先在主干网络中使用RCA-Net模块,使网络在获得各通道间联系的同时保留目标病灶的位置信息,增强网络对出血区域的特征提取及定位能力;然后在特征融合阶段采用轻量化特征金字塔网络Tiny-BiFPN,在减少网络参数量的同时,实现高效率的多尺度特征融合;最后提出小目标特征增强模块,提升算法对小出血点病灶的检测精度。实验结果表明,改进后的RCA-YOLO算法能够准确地检测并定位出血点病灶,平均检测准确率(mAP)可达79.3%,较YOLOv5s算法提高了9.5个百分点,其检测结果同样优于Faster R-CNN、YOLOv6s、YOLOv7和YOLOv8s等主流算法。
中图分类号: R587.2;R774.1;TP183;TP391.41
[1] WONG T Y, SUN J, KAWASAKI R, et al. Guidelines on diabetic eye care: the International Council of Ophthalmology recommendations for screening, follow-up, referral, and treatment based on resource settings[J]. Ophthalmology, 2018, 125(10): 1608-1622. DOI: 10.1016/j.ophtha.2018.04.007. [2] ZHAO Y B, FANG F Z. Measurement of the peripheral aberrations of human eyes: a comprehensive review[J]. Nanotechnology and Precision Engineering, 2020, 3(2): 53-68. DOI: 10.1016/j.npe.2020.05.001. [3] 张琳.糖尿病视网膜病变早期筛防的意义[J].中国医药指南,2019,17(2):80. DOI: 10.15912/j.cnki.gocm.2019.02.069. [4] 卢旭,郑世宝,彭昊玥.基于卷积神经网络的糖尿病视网膜眼底图像出血病变检测[J].电视技术,2019,43(1):84-89,110. DOI: 10.16280/j.videoe.2019.01.016. [5] 林秀琴,熊义斌,肖键,等.免散瞳眼底照相在糖尿病视网膜病变筛查中的应用分析[J].国际眼科杂志,2019,19(1):135-138. DOI: 10.3980/j.issn.1672-5123.2019.1.31. [6] 李子鹏.眼底荧光造影检查在糖尿病眼底病变筛查中的价值分析[J].中国实用医药,2022,17(15):78-80. DOI: 10.14163/j.cnki.11-5547/r.2022.15.023. [7] GARCÍA M, LÓPEZ M I, ALVAREZ D, et al. Assessment of four neural network based classifiers to automatically detect red lesions in retinal images[J]. Medical Engineering & Physics, 2010, 32(10): 1085-1093. DOI: 10.1016/j.medengphy.2010.07.014. [8] KAUR N, CHATTERJEE S, ACHARYYA M, et al. A supervised approach for automated detection of hemorrhages in retinal fundus images[C]// 2016 5th International Conference on Wireless Networks and Embedded Systems (WECON). Los Alamitos, CA: IEEE Computer Society, 2016: 1-5. DOI: 10.1109/WECON.2016.7993461. [9] KANDE G B, SAVITHRI T S, SUBBAIAH P V, et al. Detection of red lesions in digital fundus images[C]// 2009 IEEE International Symposium on Biomedical Imaging: from Nano to Macro. Los Alamitos, CA: IEEE Computer Society, 2009: 558-561. DOI: 10.1109/ISBI.2009.5193108. [10] 肖志涛,赵北方,张芳,等.基于k均值聚类和自适应模板匹配的眼底出血点检测方法[J].中国生物医学工程学报,2015,34(3):264-271. DOI: 10.3969/j.issn.0258-8021.2015.03.002. [11] SHENAVARMASOULEH F, ARABNIA H R. DRDr: automatic masking of exudates and microaneurysms caused by diabetic retinopathy using mask R-CNN and transfer learning[C]// Advances in Computer Vision and Computational Biology. Cham: Springer, 2021: 307-318. DOI: 10.1007/978-3-030-71051-4_24. [12] AKUT R R. FILM: finding the location of microaneurysms on the retina[J]. Biomedical Engineering Letters, 2019, 9(4): 497-506. DOI: 10.1007/s13534-019-00136-6. [13] 高玮玮,单明陶,宋楠,等.嵌入SENet的改进YOLOv4眼底图像微动脉瘤自动检测算法[J].生物医学工程学杂志,2022,39(4):713-720. DOI: 10.7507/1001-5515.202203022. [14] 高玮玮,杨亦乐,方宇,等.多特征尺度融合改进Faster-RCNN视网膜微动脉瘤自动检测算法[J].光子学报,2023,52(4):0410002. DOI: 10.3788/gzxb20235204.0410002. [15] 侯高峰,房丰洲.基于深度学习的糖尿病眼底病变检测研究[J].激光与光电子学进展,2023,60(2):0217001. DOI: 10.3788/LOP212505. [16] 张焕龙,齐企业,张杰,等.基于改进YOLOv5的输电线路鸟巢检测方法研究[J].电力系统保护与控制,2023,51(2):151-159. DOI: 10.19783/j.cnki.pspc.220428. [17] 黄叶祺,王明伟,闫瑞,等.基于改进的YOLOv5金刚石线表面质量检测[J].广西师范大学学报(自然科学版),2023,41(4):123-134. DOI: 10.16088/j.issn.1001-6600.2022112106. [18] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2018: 7132-7141. DOI: 10.1109/CVPR.2018.00745. [19] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Computer Vision-ECCV 2018. Cham: Springer, 2018: 3-19. DOI: 10.1007/978-3-030-01234-2_1. [20] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2020: 10778-10787. DOI: 10.1109/CVPR42600.2020.01079. [21] LI T, GAO Y Q, WANG K, et al. Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening[J]. Information Sciences, 2019, 501: 511-522. DOI: 10.1016/j.ins.2019.06.011. [22] LI C Y, LI L L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. (2022-09-07)[2023-06-01]. https://arxiv.org/abs/2209.02976. DOI: 10.48550/arXiv.2209.02976. [23] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2023: 7464-7475. DOI: 10.1109/CVPR52729.2023.00721. |
[1] | 肖宇庭, 吕晓琪, 谷宇, 刘传强. 基于拆分残差网络的糖尿病视网膜病变分类[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 91-101. |
[2] | 曾亮, 胡谦, 杨腾飞, 谭微微. 基于L-ConvNeXt网络的变电站人员安全操作检测方法[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 102-110. |
[3] | 周桥, 翟江涛, 荚东升, 孙浩翔. 基于卷积门控循环神经网络的Web攻击检测方法[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 51-61. |
[4] | 黄叶祺, 王明伟, 闫瑞, 雷涛. 基于改进的YOLOv5金刚石线表面质量检测[J]. 广西师范大学学报(自然科学版), 2023, 41(4): 123-134. |
[5] | 蔡丽坤, 吴运兵, 陈甘霖, 刘翀凌, 廖祥文. 基于生成对抗网络的类别文本生成[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 79-90. |
[6] | 彭涛, 唐经, 何凯, 胡新荣, 刘军平, 何儒汉. 基于多步态特征融合的情感识别[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 104-111. |
[7] | 吴玲玉, 蓝洋, 夏海英. 基于卷积神经网络的眼底图像配准研究[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 122-133. |
[8] | 陈文康, 陆声链, 刘冰浩, 李帼, 刘晓宇, 陈明. 基于改进YOLOv4的果园柑橘检测方法研究[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 134-146. |
[9] | 张伟彬, 吴军, 易见兵. 基于RFB网络的特征融合管制物品检测算法研究[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 34-46. |
[10] | 白捷, 高海力, 王永众, 杨来邦, 项晓航, 楼雄伟. 基于多路特征融合的Faster R-CNN与迁移学习的学生课堂行为检测[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 1-11. |
[11] | 张灿龙, 李燕茹, 李志欣, 王智文. 基于核相关滤波与特征融合的分块跟踪算法[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 12-23. |
[12] | 刘英璇, 伍锡如, 雪刚刚. 基于深度学习的道路交通标志多目标实时检测[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 96-106. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |