|
广西师范大学学报(自然科学版) ›› 2021, Vol. 39 ›› Issue (4): 34-46.doi: 10.16088/j.issn.1001-6600.2020080902
张伟彬, 吴军, 易见兵*
ZHANG Weibin, WU Jun, YI Jianbing*
摘要: 为了提高对管制物品的检测精度,本文提出一种结合RFB(receptive field block)网络结构和特征融合的目标检测算法。首先对采集的安检数据进行无效内容剔除、滤波;接着对安检数据进行人工标注和数据增强;然后在MobileNetV3-SSD算法的基础上,通过引入RFB网络改进其网络结构,以加强网络的特征提取能力,并利用特征融合的方法提高模型的小目标检测能力;最后,构建了一个安检数据集SCCI2020来验证算法的性能,该数据集包含91 767张图片。实验结果表明,本算法在安检数据集SCCI2020上的检测精度为87.0%,比MobileNetV3-SSD算法的检测精度高2.7个百分点;在COCO2014和COCO2017通用数据集上的检测精度分别为21.9%和23%,相对于VGG16-SSD、MobileNetV3-SSD算法均有一定提升。
中图分类号:
[1]JIAO L C, ZHAO J. A survey on the new generation of deep learning in image processing[J]. IEEE Access, 2019, 7: 172231-172263. DOI:10.1109/ACCESS.2019.2956508. [2]ZHANG S Q, PAN X Z, CUI Y L, et al. Learning affective video features for facial expression recognition via hybrid deep learning[J]. IEEE Access, 2019, 7: 32297-32304. DOI:10.1109/ACCESS.2019.2901521. [3]WANG K D, LI S Y, NIU S S, et al. Detection of infrared small targets using feature fusion convolutional network[J]. IEEE Access, 2019, 7: 146081-146092. DOI:10.1109/ACCESS.2019.2944661. [4]LIN L K, WANG S Y, TANG Z X. Using deep learning to detect small targets in infrared oversampling images[J]. Journal of Systems Engineering and Electronics, 2018, 29(5): 947-952. DOI:10.21629/JSEE.2018.05.07. [5]GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2014: 580-587. DOI:10.1109/CVPR.2014.81. [6]HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. DOI:10.1109/TPAMI.2015.2389824. [7]GIRSHICK R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision. Los Alamitos, CA: IEEE Computer Society, 2015: 1440-1448. DOI:10.1109/ICCV.2015.169. [8]REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. DOI:10.1109/TPAMI.2016.2577031. [9]REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2016: 779-788. DOI:10.1109/CVPR.2016.91. [10]REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL].(2018-04-08)[2020-07-10]. https://arxiv.org/abs/1804.02767v1. [11]LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]// Computer Vision: ECCV 2016. Berlin: Springer, 2016: 21-37. DOI:10.1007/978-3-319-46448-0_2. [12]HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL].(2017-04-17)[2020-07-10].https://arxiv.org/abs/1704.04861v1. [13]SANDLER M, HOWARD A G, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2018: 4510-4520. DOI:10.1109/CVPR.2018.00474. [14]LI Z X, ZHOU F Q. FSSD: feature fusion single shot mulitibox detector[EB/OL].(2018-05-17)[2020-7-10]. https://arxiv.org/abs/1712.00960v3. [15]CAO G M, XIE X M, YANG W Z, et al. Feature-fused SSD: fast detection for small objects[C]// Proceedings of SPIE Volume 10615: Ninth International Conference on Graphic and Image Processing (ICGIP 2017). Bellingham, WA: SPIE, 2018: 106151E. DOI:10.1117/12.2304811. [16]LIU S T, HUANG D, WANG Y H. Receptive field block net for accurate and fast object detection[C]// Computer Vision: ECCV 2018. Berlin: Springer, 2018: 404-419. DOI:10.1007/978-3-030-01252-6_24. [17]HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]// 2019 IEEE/CVF International Conference on Computer Vision. Los Alamitos, CA: IEEE Computer Society, 2019: 1314-1324. DOI:10.1109/ICCV.2019.00140. [18]MIAO C J, XIE L X, WAN F, et al. SIXray: a large-scale security inspection X-ray benchmark for prohibited item discovery in overlapping images[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2019: 2114-2123. DOI:10.1109/CVPR.2019.00222. [19]DAI J F, LI Y, HE K M, et al. R-FCN: object detection via region-based fully convolutional networks[EB/OL].(2016-05-20)[2020-7-10]. https://arxiv.org/abs/1605.06409. [20]LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2017: 936-944. DOI:10.1109/CVPR.2017.106. [21]REN J, CHEN X H, LIU J B, et al. Accurate single stage detector using recurrent rolling convolution[EB/OL].(2017-04-19)[2020-7-10]. https://arxiv.org/abs/1704.05776. [22]SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[C]// AAAI'17: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2017: 4278-4284. DOI:10.5555/3298023.3298188. [23]王俊强, 李建胜, 周学文, 等. 改进的SSD算法及其对遥感影像小目标检测性能的分析[J]. 光学学报, 2019, 39(6): 0628005. DOI:10.3788/AOS201939.0628005. [24]雷霆,谢榕昌, 黄滔, 等. 基于SSD改进算法的电缆隧道积水识别方法[J]. 广东电力, 2019, 32(9): 131-136. [25]任宇杰, 杨剑, 刘方涛, 等. 基于SSD和MobileNet网络的目标检测方法的研究[J]. 计算机科学与探索, 2019, 13(11): 1881-1893. DOI:10.3778/j.issn.1673-9418.1906023. [26]吉祥凌, 吴军, 易见兵, 等. 基于深度学习的管制物品自动检测算法研究[J]. 激光与光电子学进展, 2019, 56(18): 180402. |
[1] | 白捷, 高海力, 王永众, 杨来邦, 项晓航, 楼雄伟. 基于多路特征融合的Faster R-CNN与迁移学习的学生课堂行为检测[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 1-11. |
[2] | 张灿龙, 李燕茹, 李志欣, 王智文. 基于核相关滤波与特征融合的分块跟踪算法[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 12-23. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |