|
广西师范大学学报(自然科学版) ›› 2021, Vol. 39 ›› Issue (4): 47-54.doi: 10.16088/j.issn.1001-6600.2020082701
王金艳1,2*, 胡春2, 高健3
WANG Jinyan1,2*, HU Chun2, GAO Jian3
摘要: 知识编译作为人工智能的重要方向,在实时查询和推理中起重要作用。有序二元决策图(ordered binary decision diagram,OBDD)是知识编译领域中一个主要的编译目标语言,已被广泛用于编译诸多实际的可满足性问题(SAT)。近年来,OBDD的构造技术得到了深入研究,其目的是减少目标OBDD的大小并且缩短编译时间。OBDD的构造方式是影响编译效率的重要因素,为了提高编译时间效率,本文提出一种改进的OBDD构造算法,该算法将SAT问题的子句编译成OBDD的表示形式,并将这些OBDD合并成一个整体。不同于传统的合并算法逐一将OBDD合并到目标OBDD中,本文将一些OBDD先进行合并,然后再整合到目标OBDD中。对随机生成的SAT实例和产品配置问题的实验表明,本文提出的OBDD构造算法的性能优于原始算法。
中图分类号:
[1]谷文祥, 赵晓威, 殷明浩. 知识编译研究[J]. 计算机科学, 2010, 37(7): 20-26. DOI:10.3969/j.issn.1002-137X.2010.07.005. [2]CAPELLI F. Knowledge compilation languages as proof systems[C]// Theory and Applications of Satisfiability Testing-SAT 2019: LNCS Volume 11628. Cham, Switzerland: Springer Nature Switzerland AG, 2019: 90-99. DOI:10.1007/978-3-030-24258-9_6. [3]CAPELLI F. Understanding the complexity of #SAT using knowledge compilation[C]// 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). Piscataway, NJ: IEEE Press, 2017: 1-10. DOI:10.1109/LICS. 2017.8005121. [4]CADOLI M, DONINI F M, LIBERATORE P, et al. Preprocessing of intractable problems[J]. Information and Computation, 2002, 176(2): 89-120. DOI:10.1006/inco.2001.3043. [5]ITSYKSON D, KNOP A, ROMASHCHENKO A, et al. On OBDD-based algorithms and proof systems that dynamically change order of variables[J].The Journal of Symbolic Logic, 2020, 85(2): 632-670. DOI:10.1017/jsl.2019.53. [6]BURY M. Randomized OBDD-based graph algorithms[J]. Theoretical Computer Science, 2018, 751: 24-45. DOI:10.1016/ j.tcs.2016.11.028. [7]BUSS S, ITSYKSON D, KNOP A, et al. Reordering rule makes OBDD proof systems stronger[C]// 33rd Computational Complexity Conference (CCC 2018). Wadern, Germany: Schloss Dagstuhl-Leibniz Center for Informatics, 2018: 16. DOI:10.4230/LIPIcs.CCC.2018.16. [8]BOVA S, SLIVOVSKY F. On compiling structured CNFs to OBDDs[J]. Theory of Computing Systems, 2017, 61(2): 637-655. DOI:10.1007/s00224-016-9715-z. [9]MARQUIS P. Knowledge compilation using theory prime implicates[C]// Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence. San Mateo, CA: Morgan Kaufmann, 1995: 837-843. [10]JABBOUR S, MA Y, RADDAOUI B, et al. Quantifying conflicts in propositional logic through prime implicates[J]. International Journal of Approximate Reasoning, 2017, 89: 27-40. DOI:10.1016/j.ijar.2016.12.017. [11]SALHI Y. Approaches for enumerating all the essential prime implicants[C]// Artificial Intelligence: Methodology, Systems, and Applications: LNCS Volume 11089. Cham, Switzerland: Springer Nature Switzerland AG, 2018: 228-239. DOI:10.1007/978-3-319-99344-7_21. [12]SELMAN B, KAUTZ H A. Knowledge compilation and theory approximation[J]. Journal of the ACM, 1996, 43(2): 193-224. DOI:10.1145/226643.226644. [13]BOLLIG B, FARENHOLTZ M. On the relation between structured d-DNNFs and SDDs[J]. Theory of Computing Systems, 2021, 65(2): 274-295. DOI:10.1007/s00224-020-10003-y. [14]LAGNIEZ J, MARQUIS P. An improved decision-DNNF compiler[C]// Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. San Francisco, CA: International Joint Conferences on Artificial Intelligence, 2017: 667-673. DOI:10.24963/ijcai.2017/93. [15]BOVA S, CAPELLI F, MENGEL S, et al. On compiling CNFs into structured deterministic DNNFs[C]// Theory and Applications of Satisfiability Testing-SAT 2015: LNCS Volume 9340. Cham, Switzerland: Springer International Publishing AG Switzerland, 2015: 199-214. DOI:10.1007/978-3-319-24318-4_15. [16]DE UÑA D, GANGE G, SCHACHTE P, et al. Compiling CP subproblems to MDDs and d-DNNFs[J]. Constraints: An International Journal, 2019, 24(1): 56-93. DOI:10.1007/s10601-018-9297-2. [17]BOVA S. SDDs are exponentially more succinct than OBDDs[C]// Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 2016: 929-935. [18]LAI Y, LIU D Y, YIN M H. New canonical representations by Julmenting OBDDs with conjunctive decomposition[J].Journal of Artificial Intelligence Research, 2017, 58: 453-521. DOI:10.1613/jair.5271. [19]牛当当, 刘磊, 吕帅. EPCCL理论的求交知识编译算法[J]. 软件学报, 2017, 28(8): 2096-2112. DOI:10.13328/j.cnki.jos.005125. [20]牛当当, 刘磊, 吕帅. EPCCL理论的并行知识编译算法[J]. 电子学报, 2018, 46(3): 537-543. DOI:10.3969/j.issn.0372-2112.2018.03.004. [21]刘磊, 牛当当, 吕帅. 基于超扩展规则的知识编译方法[J]. 计算机学报, 2016, 39(8): 1681-1696. [22]刘大有, 赖永, 林海. C2E:一个高性能的EPCCL编译器[J]. 计算机学报, 2013, 36(6): 1254-1260. DOI:10.3724/SP.J.1016.2013.01254. [23]谷文祥, 王金艳, 殷明浩. 基于MCN和MO启发式策略的扩展规则知识编译方法[J]. 计算机研究与发展, 2011, 48(11): 2064-2073. [24]BOOTH S, MUISE C, SHAH J. Evaluating the interpretability of the knowledge compilation map: communicating logical statements effectively[C]// Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. San Francisco:International Joint Conferences on Artificial Intelligence, 2019: 5801-5807. DOI:10.24963/ijcai.2019/804. [25]SINZ C. Knowledge compilation for product configuration[C]// Proceedings of the ECAI 2002 Workshop on Configuration.Amsterdam: IOS Press, 2002: 23-26. [26]SUBBARAYAN S. Integrating CSP decomposition techniques and BDDs for compiling configuration problems[C]// Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems: LNCS Volume 3524. Berlin: Springer, 2005: 351-365. DOI:10.1007/11493853_26. [27]NARODYTSKA N, WALSH T. Constraint and variable ordering heuristics for compiling configuration problems[C]// Proceedings of the 20th International Joint Conference on Artificial Intelligence.San Mateo, CA: Morgan Kaufmann, 2007: 149-154. [28]GRUMBERG O, LIVNE S, MARKOVITCH S. Learning to order BDD variables in verification[J]. Journal of Artificial Intelligence Research, 2003, 18: 83-116. DOI:10.1613/jair.1096. [29]RUDELL R. Dynamic variable ordering for ordered binary decision diagrams[C]// Proceedings of 1993 IEEE/ACM International Conference on Computer-Aided Design.Los Alamitos, CA: IEEE Computelr Society Press, 1993: 42-47. DOI:10.1109/ICCAD.1993.580029. [30]MATTHES B, ZENGLER C, KÜCHLIN W. An improved constraint ordering heuristics for compiling configuration problems[C]// Proceedings of the Workshop on Configuration at ECAI 2012. Amsterdam: IOS Press, 2012: 36-40. [31]HUANG J B, DARWICHE A. Using DPLL for efficient OBDD construction[C]// Theory and Applications of Satisfiability Testing: LNCS Volume 3542. Berlin: Springer, 2005: 157-172. DOI:10.1007/11527695_13. [32]BRYANT R E. Graph-based algorithms for Boolean function manipulation[J]. IEEE Transactions on Computers, 1986, C-35(8): 677-691. DOI:10.1109/tc.1986.1676819. [33]MITCHELL D, SELMAN B, LEVESQUE H. Hard and easy distributions of SAT problems[C]// Proceedings of the 10th National Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 1992: 459-465. [34]PENNOCK D M, STOUT Q F. Exploiting a theory of phase transitions in three-satisfiability problems[C]// Proceedings of the Thirteenth National Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 1996: 253-258. |
[1] | 张仁津, 唐翠芳, 刘彬. 基于人工神经网络游戏程序的研究和设计[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 119-124. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |