广西师范大学学报(自然科学版) ›› 2018, Vol. 36 ›› Issue (3): 50-55.doi: 10.16088/j.issn.1001-6600.2018.03.007

• 论文 • 上一篇    下一篇

一类常微分方程的伯恩斯坦定理Ⅱ

黄荣里*, 李长友, 汪敏庆   

  1. 广西师范大学数学与统计学院,广西桂林541006
  • 收稿日期:2017-08-15 出版日期:2018-07-17 发布日期:2018-07-17
  • 通讯作者: 黄荣里(1979—),男,广东开平人,广西师范大学副教授,博士。 E-mail:ronglihuangmath@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(11261008); 广西自然科学基金(2016GXNSFCA380010); 广西研究生教育创新计划项目(YCSZ2016043)

Bernstein's Theorem for a Class of Ordinary Differential Equations Ⅱ

HUANG Rongli*, LI Changyou, WANG Minqing   

  1. College of Mathematics and Statistics, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2017-08-15 Online:2018-07-17 Published:2018-07-17

摘要: 本文基于对伪欧氏空间中拉格朗日平均曲率流自相似膨胀解的伯恩斯坦定理研究,不失一般性,即考虑一类二阶常微分方程u″=F(u-$\frac{1}{2}$tu'),u=u(t)在一定条件下解的形式,若u'(0)=0,且本文对函数F做出限制条件—函数F(u',u,t)解析,则可得到方程的解必然是二次多项式。同时本文对一类常微分方程的解的经典伯恩斯坦定理首次利用更为简洁直观的方法加以证明, 进而完善伪欧氏空间拉格朗日平均曲率流自相似解刚性定理研究。

关键词: 平均曲率流, 解析解, 自相似解, Cauchy-Kowalevskya定理

Abstract: In this paper, the Bernstein theorem for the self-expansion solution of the Lagrangian mean curvature flow in the pseudo-European space is studied. Without loss of the generality, for a class of second order ordinary differential equations such as u″=F(u-$\frac{1}{2}$tu'),u=u(t), and under certain conditions, their solutions are investigated. If u'(0)=0, and the function F is an analytic function, it is shown that the solutions of the equations are quadratic polynomials. At the same time, the classical Bernstein theorem for the solution of a class of equations is proved by using a more concise and intuitionistic method for the first time, and then the study for the self-similarity solution of the pseudo-European space Lagrangian mean curvature is developed.

Key words: mean curvature flow, analytic solution, self-similar solution, Cauchy-Kowalev-skya theorem

中图分类号: 

  • O175.7
[1] HUISKEN G.Non-parametric mean curvature evolution with boundary conditions[J].J Differential Equations,1989(77):369-378.DOI:10.1016/0022-0396(89)90149-6.
[2] ALTSCHULER S J,WU L F.Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle[J].Calculus of Variations and Partial Differential Equations,1994,2(1):101-111.DOI:10.1007/BF01234317.
[3] DING Qi,XIN Yuanlong.The rigidity theorems for Lagrangian self-shrinkers[J].Journal Für die Reine und Angewandte Mathematik,2014,2014(692):109-123.DOI:10.1515/crelle-2012-0081.
[4] CHEN Jingyi,LI Jiayu.Singularity of mean curvature flow of Lagrangian submanifolds[J]. Inventiones Mathematicae,2004,156(1):25-51.DOI:10.1007/s00222-003-0332-5.
[5] CHANG Yaling,GUO Jongshenq,KOHSAKA Y.On a two-point free boundary problem for a quasilinear parabolic equation[J].Asymptotic Analysis,2003,34(3/4): 333-358.
[6] CHERN Huahuai,GUO Jongshenq,LO Chupin.The self-similar expanding curve for the curvature flow equation[J].Proceedings of the American Mathematical Society,2003,131(10):3191-3201.
[7] HUANG Rongli,WANG Zhizhang.On the entire self-shrinking solutions to Lagrangian mean curvature flow[J].Calculus of Variations and Partial Differential Equations, 2011,41(3/4):321-339.DOI:10.1007/s00526-010-0364-9.
[8] 黄荣里,李长友.一类常微分方程的伯恩斯坦定理[J].广西师范大学学报(自然科学版),2016,34(1):102-105.DOI:10.16088/j.issn.1001-6600.2016.01.015.
[9] 陈恕行. 现代偏微分方程导论[M].北京:科学出版社,2005.
[10] XU Ruiwei, ZHU Lingyun.On the rigidity theorems for Lagrangian translating solitonsinpseudo-Euclidean space III[J].Calculus of Variations and Partial Differential Equations,2015,54(3):3337-3351.DOI:10.1007/s00526-015-0905-3.
[1] 黄荣里, 李长友. 一类常微分方程的伯恩斯坦定理[J]. 广西师范大学学报(自然科学版), 2016, 34(1): 102-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发