|
广西师范大学学报(自然科学版) ›› 2016, Vol. 34 ›› Issue (1): 102-105.doi: 10.16088/j.issn.1001-6600.2016.01.015
黄荣里, 李长友
HUANG Rongli, LI Changyou
摘要: 本文对一类二阶常微分方程u″=exp-u+12tu′,u=u(t)在一些条件下解的表达式进行探讨,若u′(0)=0,那么可得到方程的解一定是二次多项式形式,进而推动平均曲率流的自相似膨胀解的刚性定理这一新问题的研究进程。
中图分类号:
[1] JOYCE D,LEE Y I,TSUI M P.Self-similar solutions and translating solitons for Lagrangian mean curvature flow[J]. J Diff Geom,2010,84(1):127-161. [2] ANCIAUX H.Construction of Lagrangian self-similar solutions to the mean curvature flow in Cn[J].Geom Dedicata,2006,120(1):37-48. DOI:10.1007/s10711-006-9082-z. [3] CHAU A,CHEN Jingyi,YUAN Yu. Rigidity of entire self-shrinking solutions to curvature flows[J].J Reine Angew Math,2012,2012(664):229-239. DOI:10.1515/CRELLE.2011.102 [4] SMOCZYK K.Self-shrinkers of the mean curvature flow in arbitrary codimension[J].Int Math Res Not,2005,2005(48):2983-3004. DOI:10.1155/IMRN.2005.2983. [5] DING Qi,XIN Yuanlong.The rigidity theorems for Lagrangian self-shrinkers[J].J Reine Angew Math,2014,2014(692):109-123. DOI:10.1515/crelle-2012-0081. [6] XU Ruiwei,CAO Linfen. Complete self-shrink solutions for lagrangian mean curvature flow in pseudo-euclidean space[J]. Abstract and Applied Analysis,2014,2014:196751.DOI:10.1155/2014/196751. [7] HUANG Rongli,WANG Zhizhang.On the entire self-shrinking solutions to Lagrangian mean curvature flow[J].Calc Var Partial Differential Equations,2011,41(3/4):321-339. DOI:10.1007/s00526-010-0364-9. [8] 陈恕行.现代偏微分方程导论[M].北京:科学出版社,2005. |
[1] | 黄荣里, 李长友, 汪敏庆. 一类常微分方程的伯恩斯坦定理Ⅱ[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 50-55. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |