广西师范大学学报(自然科学版) ›› 2021, Vol. 39 ›› Issue (4): 21-33.doi: 10.16088/j.issn.1001-6600.2020070101

• • 上一篇    下一篇

基于SA-DBN的超短期电力负荷预测

刘东, 周莉*, 郑晓亮   

  1. 安徽理工大学, 电气与信息工程学院, 安徽 淮南 232001
  • 收稿日期:2020-07-01 修回日期:2020-07-28 出版日期:2021-07-25 发布日期:2021-07-23
  • 通讯作者: 周莉(1964—), 女, 安徽淮南人, 安徽理工大学副教授, 博士。E-mail: ld521791314@163.com
  • 基金资助:
    国家重点研发计划(2018YFF0301000); 安徽理工大学研究生创新基金(2019CX2044)

A Very Short-term Electric Load Forecasting Based on SA-DBN

LIU Dong, ZHOU Li*, ZHENG Xiaoliang   

  1. School of Electrical and Information Engineering , Anhui University of Science and Technology, Huainan Anhui 232001, China
  • Received:2020-07-01 Revised:2020-07-28 Online:2021-07-25 Published:2021-07-23

摘要: 针对超短期电力负荷预测,提出一种使用集合经验模态分解与样本熵对原始数据预处理,再用模拟退火算法优化深度置信网络的组合模型进行预测。为了减小时间序列数据因自相关性导致预测值滞后于真实值,对原始序列采用EEMD分解,根据各序列的SE值将序列重构,再使用SA对DBN各隐含层节点数寻优构成的SA-DBN模型对重构后的序列分别预测,将各序列的预测结果叠加得到最终的预测曲线。实验结果表明,相比于其他预测模型,本文模型能消除预测曲线的滞后性,预测的误差指标MAPE、MAE、RMSE分别降为1.959 2%、9.423 9、11.977 1,并且将模型的预测精度提高到96.435%。

关键词: 超短期电力负荷预测, 集合经验模态分解, 样本熵, 模拟退火算法, 深度置信网络

Abstract: Aiming at the very short-term electric load forecasting, a combined model is proposed, which uses EEMD(ensemble empirical mode decomposition )and SE(sample entropy) to preprocess the original data, and then applies SA(simulated annealing) to optimize the deep belief network for forecasting. In order to reduce the time-series data of the predicted value behind the real value caused by the autocorrelation of the data, the original sequence is decomposed by EEMD, the sequence is reconstructed according to the SE of each decomposed sequence, and the reconstructed sequence is predicted separately by SA-DBN model composed of SA optimizing the number of nodes in each hidden layer of DBN, and the predicted results of each sequence are superimposed to obtain the final prediction curve. The experimental results show that compared with other prediction models, this model can eliminate the lag of prediction curve, the predicted error indexes MAPE,MAE and RMSE are reduced to 1.9 592%, 9.423 9 and 11.977 1 respectively, and the prediction accuracy of the model is increased to 96.435%.

Key words: very short-term electric load forecasting, ensemble empirical mode decomposition, sample entropy, simulated annealing algorithm, deep belief network

中图分类号: 

  • TM715
[1]康重庆,夏清,刘梅. 电力系统负荷预测[M]. 2版. 北京:中国电力出版社,2017.
[2]谷云东,马冬芬,程红超. 基于相似数据选取和改进梯度提升决策树的电力负荷预测[J]. 电力系统及其自动化学报,2019,31(5):64-69. DOI:10.19635/j.cnki.csu-epsa.000050.
[3]HE Y Y,ZHENG Y Y. Short-term power load probability density forecasting based on Yeo-Johnson transformation quantile regression and Gaussian kernel function[J]. Energy,2018,154:143-156. DOI:10.1016/j.energy.2018.04.072.
[4]白雪. 基于神经网络的葫芦岛地区短期电力负荷预测方法研究[D]. 北京:华北电力大学,2015.
[5]陈静. 某县域电力负荷特性分析与预测研究[D]. 长春:吉林大学,2018.
[6]张涌新,沈弘,马静. 综合能源系统负荷特性分析及应用研究[J]. 电力建设,2018,39(9):18-29. DOI: 10.3969/j.issn.1000-7229.2018.09.003.
[7]万昆,柳瑞禹. 区间时间序列向量自回归模型在短期电力负荷预测中的应用[J]. 电网技术,2012,36(11):77-81. DOI:10.13335/j.1000-3673.pst.2012.11.044.
[8]李若晨,朱帆,朱永利,等. 结合受限玻尔兹曼机的递归神经网络电力系统短期负荷预测[J]. 电力系统保护与控制,2018,46(17):83-88.
[9]郎坤. 电力系统短期负荷预测及经济调度决策优化研究[D]. 大连:大连理工大学,2016.
[10]王保义,赵硕,张少敏. 基于云计算和极限学习机的分布式电力负荷预测算法[J]. 电网技术,2014,38(2):526-531. DOI:10.13335/j.1000-3673.pst.2014.02.039.
[11]王增平,赵兵,纪维佳,等. 基于GRU-NN模型的短期负荷预测方法[J]. 电力系统自动化,2019,43(5):53-58.
[12]金鑫,李龙威,季佳男,等. 基于大数据和优化神经网络短期电力负荷预测[J]. 通信学报,2016,37(增刊1):36-42.
[13]徐晶,迟福建,葛磊蛟,等. 基于SARIMA-GRNN-SVM的短期商业电力负荷组合预测方法[J]. 电力系统及其自动化学报,2020,32(2):85-91. DOI:10.19635/j.cnki.csu-epsa.000353.
[14]LI Y Y,CHE J X,YANG Y L. Subsampled support vector regression ensemble for short term electric load forecasting[J]. Energy,2018,164:160-170. DOI:10.1016/j.energy.2018.08.169.
[15]李一琨,车权,赵慧荣,等. 基于PSO-SVM的电网调度电厂耗煤基准值滚动预测[J]. 中国电力,2020,53(2):142-149.
[16]张宇帆,艾芊,林琳,等. 基于深度长短时记忆网络的区域级超短期负荷预测方法[J]. 电网技术,2019,43(6):1884-1891. DOI:10.13335/j.1000-3673.pst.2018.2101.
[17]朱俊丞,杨之乐,郭媛君,等. 深度学习在电力负荷预测中的应用综述[J]. 郑州大学学报(工学版),2019,40(5):13-22. DOI:10.13705/j.issn.1671-6833.2019.05.005.
[18]TONG C,LI J,LANG C,et al. An efficient deep model for day-ahead electricity load forecasting with stacked denoising auto-encoders[J]. Journal of Parallel and Distributed Computing,2018,117:267-273. DOI:10.1016/j.jpdc.2017.06.007.
[19]李正明,梁彩霞,王满商. 基于PSO-DBN神经网络的光伏短期发电出力预测[J]. 电力系统保护与控制,2020,48(8):149-154. DOI:10.19783/j.cnki.pspc.190723.
[20]LIU H,CHEN C,TIAN H Q,et al. A hybrid model for wind speed predication using empirical mode decomposition and artificial neural networks[J]. Renewable Energy,2012,48:545-556. DOI:10.1016/j.renene.2012.06.012.
[21]杨茂,陈郁林. 基于EMD分解和集对分析的风电功率实时预测[J]. 电工技术学报,2016,31(21):86-93. DOI:10.19595/j.cnki.1000-6753.tces.2016.21.010.
[22]WANG T,ZHANG M C,YU Q H,et al. Comparing the applications of EMD and EEMD on time-frequency analysis of seismic signal[J]. Journal of Applied Geophysics,2012,83:29-34. DOI:10.1016/j.jappgeo.2012.05.002.
[23]茆美琴,龚文剑,张榴晨,等. 基于EEMD-SVM方法的光伏电站短期出力预测[J]. 中国电机工程学报,2013,33(34):17-24. DOI:10.13334/j.0258-8013.pcsee.2013.34.007.
[24]WU Z H,HUANG N E. Ensemble empirical mode decomposition:a noise-assisted data analysis method[J]. Advances in adaptive data analysis,2009,1(1):1-41. DOI:10.1142/S1793536909000047.
[25]陈艳平,毛弋,陈萍,等. 基于EEMD-样本熵和Elman神经网络的短期电力负荷预测[J]. 电力系统及其自动化学报,2016,28(3):59-64.
[26]张亚超,刘开培,秦亮,等. 基于聚类经验模态分解-样本熵和优化极限学习机的风电功率多步区间预测[J]. 电网技术,2016,40(7):2045-2051. DOI:10.13335/j.1000-3673.pst.2016.07.017.
[27]傅文渊,凌朝东. 布朗运动模拟退火算法[J]. 计算机学报,2014,37(6):1301-1308.
[28]徐小琴,王博,赵红生,等. 基于布谷鸟搜索和模拟退火算法的两电压等级配网重构方法[J]. 电力系统保护与控制,2020,48(11):84-91. DOI:10.19783/j.cnki.pspc.190949.
[29]张思建,方彦军,贺瑶,等. 基于模拟退火算法的AVS/RS多批货箱入库货位优化[J]. 武汉大学学报(工学版),2016,49(2):315-320. DOI:10.14188/j.1671-8844.2016-02-027.
[30]ZHANG H T,ZHOU F Y,ZHANG W,et al. Real-time action recognition based on a modified deep belief network model[C]// 2014 IEEE International Conference on Information and Automation(ICIA). Piscataway,NJ:IEEE Press,2014:225-228. DOI:10.1109/ICInfA.2014.6932657.
[31]孔祥玉,郑锋,鄂志君,等. 基于深度信念网络的短期负荷预测方法[J]. 电力系统自动化,2018,42(5):133-139.
[32]纪广月. 基于改进的混沌鲸鱼算法优化DBN的广东人口数量预测研究[J]. 模糊系统与数学,2020,34(2):164-174.
[33]翁金芳,黄伟,江育娥,等. 基于多因素加法模型的中期电力负荷预测[J]. 计算机系统应用,2016,25(3):14-20.
[34]于瑞云,薛林,安轩邈,等. 基于改进GA-BP的移动通信用户流失预测算法[J]. 东北大学学报(自然科学版),2019,40(2):180-185.
[35]熊芷萱. 基于改进的极限学习机短时交通流预测模型研究[D]. 长沙:湖南大学,2016.
[36]文云峰,赵荣臻,肖友强,等. 基于多层极限学习机的电力系统频率安全评估方法[J]. 电力系统自动化,2019,43(1):133-140.
[1] 许伦辉,尹诗德,刘易家. 基于模拟退火的自适应布谷鸟算法求解公交调度问题[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 戴云飞, 祝龙记. 应用于超级电容储能的开关准Z源双向DC/DC变换器研究[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 11 -19 .
[2] 吕惠炼, 胡维平. 基于端到端深度神经网络的语音情感识别研究[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 20 -26 .
[3] 胡锦铭, 韦笃取. 不同阶次分数阶永磁同步电机的混合投影同步[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 1 -8 .
[4] 武康康, 周鹏, 陆叶, 蒋丹, 闫江鸿, 钱正成, 龚闯. 基于小批量梯度下降法的FIR滤波器[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 9 -20 .
[5] 张伟彬, 吴军, 易见兵. 基于RFB网络的特征融合管制物品检测算法研究[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 34 -46 .
[6] 王金艳, 胡春, 高健. 一种面向知识编译的OBDD构造方法[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 47 -54 .
[7] 逯苗, 何登旭, 曲良东. 非线性参数的精英学习灰狼优化算法[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 55 -67 .
[8] 李莉丽, 张兴发, 李元, 邓春亮. 基于高频数据的日频GARCH模型估计[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 68 -78 .
[9] 李松涛, 李群宏, 张文. 三自由度碰撞振动系统的余维二擦边分岔与混沌控制[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 79 -92 .
[10] 赵红涛, 刘志伟. λ重完全二部3-一致超图λK(3)n,n分解为超图双三角锥[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 93 -98 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发