|
广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (6): 51-61.doi: 10.16088/j.issn.1001-6600.2023022203
周桥, 翟江涛*, 荚东升, 孙浩翔
ZHOU Qiao, ZHAI Jiangtao*, JIA Dongsheng, SUN Haoxiang
摘要: 针对Web应用程序的攻击一直是网络空间对抗的热点问题,随着 Web攻击技术的不断发展,传统的入侵检测系统和Web应用防火墙越来越无法满足安全防护需求。针对攻击者在Web请求中嵌入可执行代码或注入恶意代码来构造各种Web攻击,本文设计一种基于特征融合的恶意Web请求检测卷积门控循环单元(CGRU)神经网络。该网络利用CNN捕捉网络事件的局部特征和高阶特征,摒弃了传统的池化方法,采用GRU代替原有的池化层在时间维度上进行特征采集。同时,为了提高检测性能,筛选传统机器学习中在Web攻击检测领域分类效果较好的9个统计特征来增强原始特征。此外,还使用Word2Vec模型对词嵌入矩阵进行预训练,获得CGRU模型的输入,并对最终结果进行分类,有效提高多分类精度。在公开的HTTP CSIC 2010数据集上与当前典型方法进行对比实验,结果表明:本文所提方法的准确率为99.81%,召回率为99.78%,F1值为98.80%,精准率为99.81%,较当前典型方法均有提高。
中图分类号: TP393.08; TP183
[1] 黄长慧, 胡光俊, 李海威. 基于URL智能白名单的Web应用未知威胁阻断技术研究[J]. 信息网络安全, 2021, 21(3): 1-6. DOI: 10.3969/j.issn.1671-1122.2021.03.001. [2] 赵凡, 倪志敏. 基于动态IP黑名单的轻量级WEB入侵主动防御关键技术与可视化度量模型研究与应用[J]. 中国建材科技, 2018, 27(1): 70-71. DOI: 10.3969/j.issn.1003-8965.2018.01.028. [3] WITTERN E, YING A T T, ZHENG Y H, et al. Statically checking web API requests in JavaScript[C]// 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE). Los Alamitos, CA: IEEE Computer Society, 2017: 244-254. DOI: 10.1109/ICSE.2017.30. [4] 蹇诗婕, 卢志刚, 杜丹, 等. 网络入侵检测技术综述[J]. 信息安全学报, 2020, 5(4): 96-122. DOI: 10.19363/J.cnki.cn10-1380/tn.2020.07.07. [5] LUO C C, TAN Z Y, MIN G Y, et al. A novel web attack detection system for internet of things via ensemble classification[J]. IEEE Transactions on Industrial Informatics, 2021, 17(8): 5810-5818. DOI: 10.1109/TII.2020.3038761. [6] PRAKASH P, KUMAR M, KOMPELLA R R, et al. PhishNet: predictive blacklisting to detect phishing attacks[C]// 2010 Proceedings IEEE INFOCOM. Piscataway, NJ: IEEE, 2010: 1-5. DOI: 10.1109/INFCOM.2010.5462216. [7] SUN B, AKIYAMA M, YAGI T, et al. Automating URL blacklist generation with similarity search approach[J]. IEICE Transactions on Information and Systems, 2016, E99-D(4): 873-882. DOI: 10.1587/transinf.2015ICP0027. [8] 张磊, 蔡永新, 陈潮. 基于时间序列分析的无线传感器网络入侵检测研究[J]. 计算机时代, 2017(12): 24-27, 31. DOI: 10.16644/j.cnki.cn33-1094/tp.2017.12.007. [9] MAMUN M S I, RATHORE M A, LASHKARI A H, et al. Detecting malicious URLs using lexical analysis[C]// Network and System Security: LNCS Volume 9955. Cham: Springer International Publishing AG, 2016: 467-482. DOI: 10.1007/978-3-319-46298-1_30. [10] 侯禹洛. 基于机器学习的恶意HTTP请求检测研究[D]. 成都: 电子科技大学, 2022. DOI: 10.27005/d.cnki.gdzku. 2022.001458. [11] NGUYEN H T, TORRANO-GIMENEZ C, ALVAREZ G, et al. Application of the generic feature selection measure in detection of web attacks[C]// Computational Intelligence in Security for Information Systems: LNCS Volume 6694. Berlin: Springer-Verlag, 2011: 25-32. DOI: 10.1007/978-3-642-21323-6_4. [12] 刘健, 赵刚, 郑运鹏. 恶意URL多层过滤检测模型策略研究[J]. 信息安全研究, 2016, 2(1): 80-85. [13] ALJABRI M, ALJAMEEL S S, MOHAMMAD R M A, et al. Intelligent techniques for detecting network attacks: review and research directions[J]. Sensors, 2021, 21(21): 7070. DOI: 10.3390/s21217070. [14] AL-ALYAN A, AL-AHMADI S. Robust URL phishing detection based on deep learning[J]. KSII Transactions on Internet and Information Systems, 2020, 14(7): 2752-2768. DOI: 10.3837/tiis.2020.07.001. [15] 范敏, 胥小波, 聂小明. 基于字符级扩张卷积网络的Web攻击检测方法[J]. 计算机应用研究, 2020, 37(S2): 234-237. [16] YANG W C, ZUO W, CUI B J. Detecting malicious URLs via a keyword-based convolutional gated-recurrent-unit neural network[J]. IEEE Access, 2019, 7: 29891-29900. DOI: 10.1109/ACCESS.2019.2895751. [17] LI J C, FU Y S, XU J, et al. Web application attack detection based on attention and gated convolution networks[J]. IEEE Access, 2020, 8: 20717-20724. DOI: 10.1109/ACCESS.2019.2955674. [18] 刘拥民, 黄浩, 石婷婷, 等. 轻量级词典协同记忆聚焦处理的Web攻击检测研究[J]. 重庆理工大学学报(自然科学), 2023, 37(3): 172-182. DOI: 10.3969/j.issn.1674-8425(z).2023.03.020. [19] TIAN Z H, LUO C C, QIU J, et al. A distributed deep learning system for web attack detection on edge devices[J]. IEEE Transactions on Industrial Informatics, 2020, 16(3): 1963-1971. DOI: 10.1109/TII.2019.2938778. [20] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL].(2013-09-07)[2023-02-22]. http://arxiv.org/abs/1301.3781. DOI: 10.48550/arXiv.1301.3781. [21] NIU Q Q, LI X Y. A high-performance web attack detection method based on CNN-GRU model[C]// 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). Piscataway, NJ: IEEE, 2020: 804-808. DOI: 10.1109/ITNEC48623.2020.9085028. [22] ZHOU C T, SUN C L, LIU Z Y, et al. A C-LSTM neural network for text classification[EB/OL].(2015-11-30)[2023-02-22]. http://arxiv.org/abs/1511.08630. DOI: 10.48550/arXiv.1511.08630. [23] PASCANU R, MIKOLOV T, BENGIO Y. On the difficulty of training recurrent neural networks[J]. Proceedings of Machine Learning Research, 2013, 28(3): 1310-1318. [24] 刘学娥. 基于深度学习的web应用层攻击检测模型[D]. 成都: 电子科技大学, 2022. DOI: 10.27005/d.cnki.gdzku. 2022.001216. [25] GRAVES A. Long short-term memory[M]// GRAVES A. Supervised Sequence Labelling with Recurrent Neural Networks. Berlin: Springer-Verlag, 2012: 37-45. DOI: 10.1007/978-3-642-24797-2_4. [26] CHUNG J Y, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL].(2014-12-11)[2023-02-22]. http://arxiv.org/abs/1412.3555. DOI: 10.48550/arXiv.1412.3555. [27] ZHAO N, GAO H, WEN X, et al. Combination of convolutional neural network and gated recurrent unit for aspect-based sentiment analysis[J]. IEEE Access, 2021, 9: 15561-15569. DOI: 10.1109/ACCESS.2021.3052937. [28] LIPPMANN R, HAINES J W, FRIEDD J, et al. The 1999 DARPA off-line intrusion detection evaluation[J]. Computer Networks, 2000, 34(4): 579-595. DOI: 10.1016/S1389-1286(00)00139-0. [29] MCHUGH J. Testing intrusion detection systems: a critique of the 1998 and 1999 DARPA intrusion detection system evaluations as performed by Lincoln Laboratory[J]. ACM Transactions on Information and System Security, 2000, 3(4): 262-294. DOI: 10.1145/382912.382923. [30] TEKEREK A. A novel architecture for web-based attack detection using convolutional neural network[J]. Computers & Security, 2021, 100: 102096. DOI: 10.1016/j.cose.2020.102096. [31] BASURTO N, MICHELENA Á, URDA D, et al. Dimensionality-reduction methods for the analysis of web traffic[C]//International Joint Conference 15th International Conference on Computational Intelligence in Security for Information Systems (CISIS 2022) 13th International Conference on EUropean Transnational Education (ICEUTE 2022). Cham: Springer Nature Switzerland AG, 2022: 62-72. DOI: 10.1007/978-3-031-18409-3_7. [32] ITO M, IYATOMI H. Web application firewall using character-level convolutional neural network[C]// 2018 IEEE 14th International Colloquium on Signal Processing & Its Applications (CSPA). Piscataway, NJ: IEEE, 2018: 103-106. DOI: 10.1109/CSPA.2018.8368694. [33] ZHANG M, XU B Y, BAI S, et al. A deep learning method to detect web attacks using a specially designed CNN[C]// Neural Information Processing: LNCS Volume 10638. Cham: Springer International Publishing AG, 2017: 828-836. DOI: 10.1007/978-3-319-70139-4_84. [34] 王硕, 王坚, 王亚男, 等. 一种基于特征融合的恶意代码快速检测方法[J]. 电子学报, 2023, 51(1): 57-66. DOI: 10.12263/DZXB.20211701. [35] 谭茹涵, 左黎明, 刘二根, 等. 基于图像特征融合的恶意代码检测[J]. 信息网络安全, 2021, 21(10): 90-95. DOI: 10.3969/j.issn.1671-1122.2021.10.013. [36] 刘紫煊, 王晨. 基于多特征融合的BiLSTM恶意代码分类[J]. 电子设计工程, 2022, 30(18): 67-72. DOI: 10.14022/j.issn1674-6236.2022.18.014. |
[1] | 高飞, 郭晓斌, 袁冬芳, 曹富军. 改进PINNs方法求解边界层对流占优扩散方程[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 33-50. |
[2] | 吴正清, 曹晖, 刘宝锴. 基于注意力卷积神经网络的中文虚假评论检测[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 26-36. |
[3] | 欧阳舒歆, 王洺钧, 荣垂田, 孙华波. 基于改进LSTM的多维QAR数据异常检测[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 49-60. |
[4] | 唐侯清, 辛斌斌, 朱虹谕, 乙加伟, 张冬冬, 武新章, 双丰. 基于多尺度注意力倒残差网络的轴承故障诊断[J]. 广西师范大学学报(自然科学版), 2023, 41(4): 109-122. |
[5] | 韩欣月, 邓长征, 付添, 夏鹏雨, 刘旋. 基于MWOA-Elman神经网络的接地网瞬变电磁缺陷识别[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 53-66. |
[6] | 杨烁祯, 张珑, 王建华, 张恒远. 声音事件检测综述[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 1-18. |
[7] | 潘海明, 陈庆锋, 邱杰, 何乃旭, 刘春雨, 杜晓敬. 基于卷积推理的多跳知识图谱问答算法[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 102-112. |
[8] | 张涛, 杜建民. 基于无人机遥感的荒漠草原微斑块识别研究[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 50-58. |
[9] | 肖飞, 康增彦, 王维红. 两种算法用于预测A2/O工艺脱氮条件[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 173-184. |
[10] | 郝雅茹, 董力, 许可, 李先贤. 预训练语言模型的可解释性研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 59-71. |
[11] | 田晟, 宋霖. 基于CNN和Bagging集成的交通标志识别[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 35-46. |
[12] | 蔡丽坤, 吴运兵, 陈甘霖, 刘翀凌, 廖祥文. 基于生成对抗网络的类别文本生成[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 79-90. |
[13] | 周圣凯, 富丽贞, 宋文爱. 基于深度学习的短文本语义相似度计算模型[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 49-56. |
[14] | 彭涛, 唐经, 何凯, 胡新荣, 刘军平, 何儒汉. 基于多步态特征融合的情感识别[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 104-111. |
[15] | 马新娜, 赵猛, 祁琳. 基于卷积脉冲神经网络的故障诊断方法研究[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 112-120. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |