广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (6): 62-69.doi: 10.16088/j.issn.1001-6600.2023052001

• • 上一篇    下一篇

基于数据增强的多层次论点立场分类方法

林玩聪, 韩明杰, 靳婷*   

  1. 海南大学 计算机科学与技术学院, 海南 海口 570228
  • 收稿日期:2023-05-20 修回日期:2023-06-21 发布日期:2023-12-04
  • 通讯作者: 靳婷(1982—), 女, 河北赵县人, 海南大学正高级实验师, 博导。E-mail: jinting@hainanu.edu.cn
  • 基金资助:
    国家自然科学基金(61862021); 海南省自然科学基金(620RC565)

Multi-level Argument Position Classification Method via Data Augmentation

LIN Wancong, HAN Mingjie, JIN Ting*   

  1. School of Computer Science and Technology, Hainan University, Haikou Hainan 570228, China
  • Received:2023-05-20 Revised:2023-06-21 Published:2023-12-04

摘要: 本文旨在研究论点抽取技术,该技术的目的在于识别、抽取和分析文本信息中的论辩成分与结构。通过从若干句子中提取与辩题相关的论点,并判断该论点的立场为支持或反对,来完成对论辩事实文本的智能分析。以往的研究主要基于卷积神经网络和循环神经网络等深度学习模型,网络结构简单,无法从论辩中学习到更深层次的特征。为学习到论辩文本中更丰富的语义信息来对论辩立场进行分类,本文提出一种增强的RoBERTa模型EnhRoBERTa。该模型以预训练语言模型RoBERTa为基础,充分利用多层次的多头注意力机制,并且提取浅层和深层语义表示进行融合,从多个特征维度进一步理解论点和辩题之间的关系,完成对论点的立场分类。然而,考虑到论点对立场的分布不均衡问题,本文采用数据增强技术,增强对少样本的学习能力。在CCAC2022比赛数据集上的实验结果表明:本文模型相较于基线模型可以提取到更丰富的文本特征,取得61.4%的F1-score,比未使用预训练的基线模型TextCNN和BiLSTM提高约19个百分点,比RoBERTa提高3.8个百分点。

关键词: 立场分类, 数据增强, 预训练语言模型, 多头注意力, 多层特征提取

Abstract: The purpose of this paper is to investigate argument extraction techniques, in order to identify, extract, and analyze argumentative components and structures in textual information. The intelligent analysis of debate fact text is accomplished by extracting arguments related to the topic of debate from multiple sentences and determining whether the position of the argument is supportive or oppositional. Previous research has mainly relied on deep learning models such as convolutional neural networks and recurrent neural networks, which have simple network structures and cannot learn deeper features from arguments. In order to learn richer semantic information from argumentative text for position classification better, this paper proposes an enhanced RoBERTa model (EnhRoBERTa) based on the pre-training language model RoBERTa, which fully utilizes the multi-level multi-head attention mechanism and extracts shallow and deep semantic representations for fusion, enabling a comprehensive understanding of the relationship between arguments and debate topics from multiple feature dimensions, thereby facilitating argument position classification. However, considering the problem of imbalanced distribution of position in argumentative points, this paper adopts data augmentation techniques to enhance the learning ability of scarce samples. The experimental results on the CCAC2022 match data set show that the proposed model can extract more text features than other baseline models, achieving an F1-score of 61.4%, which is approximately 19% higher than that of the baseline models TextCNN and BiLSTM, and 3.8% higher than that of the RoBERTa.

Key words: position classification, data augmentation, pre-training language model, multiple attention, multi-layer feature extraction

中图分类号:  TP391.1

[1] THOMAS M, PANG B, LEE L. Get out the vote:determining support or opposition from Congressional floor-debate transcripts[C]// Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2006: 327-335.
[2] BURFOOT C, BIRD S, BALDWIN T. Collective classification of congressional floor-debate transcripts[C]// Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: Association for Computational Linguistics, 2011: 1506-1515.
[3] ANAND P, WALKER M, ABBOTT R, et al. Cats rule and dogsdrool!: classifying stance in online debate[C]// Proceedings of the 2nd Workshop on Computational Approaches to Subjectivity and Sentiment Analysis (WASSA 2.011). Stroudsburg, PA: Association for Computational Linguistics, 2011: 1-9.
[4] 王儒, 王嘉梅, 王伟全, 等. 深度学习框架下微博文本情感细粒度研究[J]. 计算机系统应用, 2020, 29(5): 19-28. DOI: 10.15888/j.cnki.csa.007371.
[5] 王安君, 黄凯凯, 陆黎明. 基于Bert-Condition-CNN的中文微博立场检测[J]. 计算机系统应用, 2019, 28(11): 45-53. DOI: 10.15888/j.cnki.csa.007152.
[6] MOENS M F, BOIY E, PALAU R M, et al. Automatic detection of arguments in legal texts[C]// Proceedings of the 11th International Conference on Artificial Intelligence and Law. New York, NY: Association for Computing Machinery, 2007: 225-230. DOI: 10.1145/1276318.1276362.
[7] FLOROU E, KONSTANTOPOULOS S, KOUKOURIKOS A, et al. Argument extraction for supporting public policy formulation[C]// Proceedings of the 7th Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities. Stroudsburg, PA: Association for Computational Linguistics, 2013: 49-54.
[8] STAB C, GUREVYCH I. Parsing argumentation structures in persuasive essays[J]. Computational Linguistics, 2017, 43(3): 619-659. DOI: 10.1162/COLI_a_00295.
[9] 杨进才, 汪燕燕, 曹元, 等. 关系词非充盈态复句的特征融合CNN关系识别方法[J]. 计算机系统应用, 2020, 29(6): 224-229. DOI: 10.15888/j.cnki.csa.007369.
[10] 孙凯丽, 邓沌华, 李源, 等. 基于句内注意力机制多路CNN的汉语复句关系识别方法[J]. 中文信息学报, 2020, 34(6): 9-17, 26. DOI: 10.3969/j.issn.1003-0077.2020.06.003.
[11] 黄丽明, 陈维政, 闫宏飞, 等. 基于循环神经网络和深度学习的股票预测方法[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 13-22. DOI: 10.16088/j.issn.1001-6600.2019.01.002.
[12] 邵良杉, 周玉. 基于语义规则与RNN模型的在线评论情感分类研究[J]. 中文信息学报, 2019, 33(6): 124-131. DOI: 10.3969/j.issn.1003-0077.2019.06.018.
[13] 周圣凯, 富丽贞, 宋文爱. 基于深度学习的短文本语义相似度计算模型[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 49-56. DOI: 10.16088/j.issn.1001-6600.2021071001.
[14] ZARRELLA G, MARSH A.MITRE at SemEval-2016 task 6: transfer learning for stance detection[C]// Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016). Stroudsburg, PA: Association for Computational Linguistics, 2016: 458-463. DOI: 10.18653/v1/S16-1074.
[15] MOHTARAMI M, BALY R, GLASS J, et al. Automatic stance detection using end-to-end memory networks[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2018: 767-776. DOI: 10.18653/v1/N18-1070.
[16] LI M L, GAO Y, WEN H, et al. Joint RNN model for argument component boundary detection[C]// 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Piscataway, NJ: IEEE, 2017: 57-62. DOI: 10.1109/SMC.2017.8122578.
[17] LAHA A, RAYKAR V. An empirical evaluation of various deep learning architectures for bi-sequence classification tasks[C]// Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers. Osaka: The COLING 2016 Organizing Committee, 2016: 2762-2773.
[18] 郝雅茹, 董力, 许可, 等. 预训练语言模型的可解释性研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 59-71. DOI: 10.16088/j.issn.1001-6600.2022030802.
[19] LEWIS M, LIU Y H, GOYAL N, et al. BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2020: 7871-7880. DOI: 10.18653/v1/2020.acl-main.703.
[20] SUN Y, WANG S H, LI Y K, et al. ERNIE: enhanced representation through knowledge integration[EB/OL].(2019-04-19)[2023-05-20]. http://arxiv.org/abs/1904.09223. DOI: 10.48550/arXiv.1904.09223.
[21] DEVLIN J, CHANG M W, LEE K, et al.BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg, PA: Association for Computational Linguistics, 2019: 4171-4186. DOI: 10.18653/v1/N19-1423.
[22] 胡婕, 何巍, 曾张帆. 基于RoBERTa的全局图神经网络文档级中文金融事件抽取[J]. 中文信息学报, 2023, 37(2): 107-118. DOI: 10.3969/j.issn.1003-0077.2023.02.011.
[23] 马天宇, 覃俊, 刘晶, 等. 基于 BERT 的意图分类与槽填充联合方法[J]. 中文信息学报, 2022, 36(8): 127-134. DOI: 10.3969/j.issn.1003-0077.2022.08.016.
[24] JAWAHAR G, SAGOT B, SEDDAH D. What does BERT learn about the structure of language?[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2019: 3651-3657. DOI: 10.18653/v1/P19-1356.
[25] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327. DOI: 10.1109/TPAMI.2018.2858826.
[26] 孙毅, 裘杭萍, 郑雨, 等. 自然语言预训练模型知识增强方法综述[J]. 中文信息学报, 2021, 35(7): 10-29. DOI: 10.3969/j.issn.1003-0077.2021.07.002.
[27] LIU Y H, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized BERT pretraining approach[EB/OL].(2019-07-26)[2023-05-20]. http://arxiv.org/abs/1907.11692. DOI: 10.48550/arXiv.1907.11692.
[28] KIM Y.Convolutional neural networks for sentence classification[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, PA: Association for Computational Linguistics, 2014: 1746-1751. DOI: 10.3115/v1/D14-1181.
[29] ZHANG S, ZHENG D Q, HU X C, et al. Bidirectional long short-term memory networks for relation classification[C]// Proceedings of the 29th Pacific Asia Conference on Language, Information and Computation. Stroudsburg, PA: Association for Computational Linguistics, 2015: 73-78.
[1] 孔亚钰, 卢玉洁, 孙中天, 肖敬先, 侯昊辰, 陈廷伟. 面向强化当前兴趣的图神经网络推荐算法研究[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 151-160.
[2] 吴军, 欧阳艾嘉, 张琳. 基于多头注意力机制的磷酸化位点预测模型[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 161-171.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 董淑龙, 马姜明, 辛文杰. 景观视觉评价研究进展与趋势——基于CiteSpace的知识图谱分析[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 1 -13 .
[2] 马乾然, 韦笃取. 基于线性耦合储备池计算的电机系统混沌预测研究[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 1 -7 .
[3] 颜闽秀, 靳琪森. 多维混沌系统的构建及其多通道自适应控制[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 8 -21 .
[4] 赵伟, 田帅, 张强, 王耀申, 王思博, 宋江. 基于改进YOLOv5的平贝母检测模型[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 22 -32 .
[5] 高飞, 郭晓斌, 袁冬芳, 曹富军. 改进PINNs方法求解边界层对流占优扩散方程[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 33 -50 .
[6] 周桥, 翟江涛, 荚东升, 孙浩翔. 基于卷积门控循环神经网络的Web攻击检测方法[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 51 -61 .
[7] 温雪岩, 谷训开, 李祯, 黄英来, 黄鹤林. 融合释义与双向交互的成语阅读理解方法研究[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 70 -79 .
[8] 宋冠武, 陈知明, 李建军. 基于ResNet-50的级联注意力遥感图像分类[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 80 -91 .
[9] 徐紫钰, 吴克晴. Caputo型分数阶微分系统正解的唯一性[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 92 -104 .
[10] 郭洁, 索洪敏, 朱怡颖, 郭加超. 一类具有临界指数和不定位势的Kirchhoff型问题解的存在性[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 105 -112 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发