广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (6): 92-104.doi: 10.16088/j.issn.1001-6600.2023032202

• • 上一篇    下一篇

Caputo型分数阶微分系统正解的唯一性

徐紫钰, 吴克晴*   

  1. 江西理工大学 理学院, 江西 赣州 341000
  • 收稿日期:2023-03-22 修回日期:2023-05-08 发布日期:2023-12-04
  • 通讯作者: 吴克晴(1972—), 男, 江西鹰潭人, 江西理工大学副教授, 博士。 E-mail: 317595750@qq.com
  • 基金资助:
    国家自然科学基金(61364015)

Uniqueness of Positive Solutions for Caputo Fractional Differential Systems

XU Ziyu, WU Keqing*   

  1. School of Science, Jiangxi University of Science and Technology, Ganzhou Jiangxi 341000, China
  • Received:2023-03-22 Revised:2023-05-08 Published:2023-12-04

摘要: 考虑一类非线性p-Laplacian分数阶微分方程耦合系统多点边值问题,其中非线性函数包含Caputo分数阶导数,其边界条件包含非线性积分项。基于和算子的广义不动点定理及分数阶微积分算子的性质,分析该耦合系统的唯一正解;借助相应算子方程推导出唯一正解的存在性;通过数值算例对主要结果进行检验分析。

关键词: 正解, 分数阶导数, 算子方程, p-Laplacian, 唯一性

Abstract: A class of nonlinear p-Laplacian fractional differential equation coupling systems with multipoint boundary value problems is considered where the nonlinear function contains the Caputo fractional derivative and the boundary conditions include nonlinear integral terms. Based on the generalized fixed point theorem of sum operator and the properties of fractional calculus operator, the unique positive solution of the coupling system is analyzed. The existence of the unique positive solution is deduced by means of the corresponding operator equation, and the main results are obtained. The main results are tested by numerical examples.

Key words: positive solution, fractional derivative, operator equation, p-Laplacian, uniqueness

中图分类号:  O175.8

[1] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of fractional differential equations[M]. Amsterdam: Elsevier, 2006.
[2] ZHAO X D, LIU Y H, PANG H H. Iterative positive solutions to a coupled fractional differential system with the multistrip and multipoint mixed boundary conditions[J]. Advances in Difference Equations, 2019,2019(1): 389. DOI: 10.1186/s13662-019-2259-1.
[3] SUBRAMANIAN M, MANIGANDAN M, TUNÇ C, et al. On system of nonlinear coupled differential equations and inclusions involving Caputo-type sequential derivatives of fractional order[J]. Journal of Taibah University for Science, 2022, 16(1): 1-23. DOI: 10.1080/16583655.2021.2010984.
[4] 彭钟琪, 李媛, 薛益民. 一类非线性分数阶微分方程耦合系统边值问题的两个正解[J].吉林大学学报(理学版), 2020, 58(4): 775-781. DOI:10.13413/j.cnki.jdxblxb.2019421.
[5] ZHANG L C,ZHANG W G,LIU X P, et al. Positive solutions of fractional p-Laplacian equations with integral boundary value and two parameters[J]. Journal of Inequalities and Applications, 2020, 2020(1): 2. DOI: 10.1186/s13660-019-2273-6.
[6] QAROUT D, AHMAD B, ALSAEDI A. Existence theorems for semi-linear Caputo fractional differential equations with nonlocal discrete and integral boundary conditions[J]. Fractional Calculus and Applied Analysis, 2016, 19(2): 463-479. DOI: 10.1515/fca-2016-0024.
[7] 段永红, 王文霞. 一类带有偏差量的任意分数阶非线性微分方程边值问题唯一正解的存在性[J].华中师范大学学报(自然科学版), 2022, 56(4): 567-572,576. DOI: 10.19603/j.cnki.1000-1190.2022.04.003.
[8] ZHAI C B, MA Y Y, LI H Y. Unique positive solution for a p-Laplacian fractional differential boundary value problem involving Riemann-Stieltjes integral[J]. AIMS Mathematics, 2020, 5(5): 4754-4769. DOI: 10.3934/math.2020304.
[9] LV Z W. Existence of positive solution for fractional differential systems with multipoint boundary value conditions[J]. Journal of Function Spaces, 2020, 2020: 9520430. DOI: 10.1155/2020/9520430.
[10] WANG W X. Unique positive solutions for boundary value problem of p-Laplacian fractional differential equation with a sign-changed nonlinearity[J]. Nonlinear Analysis: Modelling and Control, 2022, 27(6): 1110-1128. DOI:10.15388/namc.2022. 2729503.
[11] WANG W X. Properties of Green’s function and the existence of different types of solutions for nonlinear fractional BVP with a parameter in integral boundary conditions[J]. Boundary Value Problems, 2019, 2019(1): 76. DOI: 10.1186/s13661-019-1184-2.
[12] WEI Z L, DONG W, CHE J L. Periodic boundary value problems for fractional differential equations involving a Riemann-Liouville fractional derivative[J]. Nonlinear Analysis, Theory: Methods and Applications, 2010, 73(10): 3232-3238. DOI: 10.1016/j.na.2010.07.003.
[13] WANG W X, GUO X T. Eigenvalue problem for fractional differential equations with nonlinear integral and disturbance parameter in boundary conditions[J]. Boundary Value Problems, 2016, 2016: 42. DOI: 10.1186/s13661-016-0548-0.
[14] 左佳斌, 贠永震. 一类分数阶微分方程的反周期边值问题[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 56-64. DOI:10.16088/j.issn.1001-6600.2020.06.007.
[15] SUBRAMANIAN M, ALZABUT J, ABBAS M, et al. Existence of solutions for coupled higher-order fractional integro-differential equations with nonlocal integral and multi-point boundary conditions depending on lower-order fractional derivatives and integrals[J]. Mathematics, 2022, 10(11): 1823. DOI: 10.3390/math10111823.
[16] AHMAD B, ALGHANMI M, ALSAEDI A, et al. Existence and uniqueness results for a nonlinear coupled system involving Caputo fractional derivatives with a new kind of coupled boundary conditions[J]. Applied Mathematics Letters, 2021, 116: 107018. DOI: 10.1016/j.aml.2021.107018.
[17] LIU X P, JIA M, GE W G. The method of lower and upper solutions for mixed fractional four-point boundary value problem with p-Laplacian operator[J]. Applied Mathematics Letters, 2017, 65: 56-62. DOI:10.1016/j.aml.2016.10.001.
[1] 蒋维, 李雨涵, 李红英. 一类带双临界指数的凹凸非线性分数阶Schrödinger-Poisson系统的两个正解[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 113-121.
[2] 闫荣君, 韦煜明, 冯春华. p-Laplacian算子的时滞分数阶微分方程边值问题3个正解的存在性[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 75-82.
[3] 韩彩虹, 李略, 黄丽丽. 一类差分方程的全局渐近稳定性[J]. 广西师范大学学报(自然科学版), 2017, 35(1): 53-57.
[4] 韩彩虹, 李略, 庞琳娜, 侯欣欣. 极大型差分方程xn=max${\frac{1}{x_{n-k}^{\alpha}},\frac{A_n}{x^{\beta}_{n-k-2}}}$的全局吸引性[J]. 广西师范大学学报(自然科学版), 2015, 33(3): 71-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 左佳斌, 贠永震. 一类分数阶微分方程的反周期边值问题[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 56 -64 .
[2] 董淑龙, 马姜明, 辛文杰. 景观视觉评价研究进展与趋势——基于CiteSpace的知识图谱分析[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 1 -13 .
[3] 马乾然, 韦笃取. 基于线性耦合储备池计算的电机系统混沌预测研究[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 1 -7 .
[4] 颜闽秀, 靳琪森. 多维混沌系统的构建及其多通道自适应控制[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 8 -21 .
[5] 赵伟, 田帅, 张强, 王耀申, 王思博, 宋江. 基于改进YOLOv5的平贝母检测模型[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 22 -32 .
[6] 高飞, 郭晓斌, 袁冬芳, 曹富军. 改进PINNs方法求解边界层对流占优扩散方程[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 33 -50 .
[7] 周桥, 翟江涛, 荚东升, 孙浩翔. 基于卷积门控循环神经网络的Web攻击检测方法[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 51 -61 .
[8] 林玩聪, 韩明杰, 靳婷. 基于数据增强的多层次论点立场分类方法[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 62 -69 .
[9] 温雪岩, 谷训开, 李祯, 黄英来, 黄鹤林. 融合释义与双向交互的成语阅读理解方法研究[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 70 -79 .
[10] 宋冠武, 陈知明, 李建军. 基于ResNet-50的级联注意力遥感图像分类[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 80 -91 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发