|
广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (6): 92-104.doi: 10.16088/j.issn.1001-6600.2023032202
徐紫钰, 吴克晴*
XU Ziyu, WU Keqing*
摘要: 考虑一类非线性p-Laplacian分数阶微分方程耦合系统多点边值问题,其中非线性函数包含Caputo分数阶导数,其边界条件包含非线性积分项。基于和算子的广义不动点定理及分数阶微积分算子的性质,分析该耦合系统的唯一正解;借助相应算子方程推导出唯一正解的存在性;通过数值算例对主要结果进行检验分析。
中图分类号: O175.8
[1] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of fractional differential equations[M]. Amsterdam: Elsevier, 2006. [2] ZHAO X D, LIU Y H, PANG H H. Iterative positive solutions to a coupled fractional differential system with the multistrip and multipoint mixed boundary conditions[J]. Advances in Difference Equations, 2019,2019(1): 389. DOI: 10.1186/s13662-019-2259-1. [3] SUBRAMANIAN M, MANIGANDAN M, TUNÇ C, et al. On system of nonlinear coupled differential equations and inclusions involving Caputo-type sequential derivatives of fractional order[J]. Journal of Taibah University for Science, 2022, 16(1): 1-23. DOI: 10.1080/16583655.2021.2010984. [4] 彭钟琪, 李媛, 薛益民. 一类非线性分数阶微分方程耦合系统边值问题的两个正解[J].吉林大学学报(理学版), 2020, 58(4): 775-781. DOI:10.13413/j.cnki.jdxblxb.2019421. [5] ZHANG L C,ZHANG W G,LIU X P, et al. Positive solutions of fractional p-Laplacian equations with integral boundary value and two parameters[J]. Journal of Inequalities and Applications, 2020, 2020(1): 2. DOI: 10.1186/s13660-019-2273-6. [6] QAROUT D, AHMAD B, ALSAEDI A. Existence theorems for semi-linear Caputo fractional differential equations with nonlocal discrete and integral boundary conditions[J]. Fractional Calculus and Applied Analysis, 2016, 19(2): 463-479. DOI: 10.1515/fca-2016-0024. [7] 段永红, 王文霞. 一类带有偏差量的任意分数阶非线性微分方程边值问题唯一正解的存在性[J].华中师范大学学报(自然科学版), 2022, 56(4): 567-572,576. DOI: 10.19603/j.cnki.1000-1190.2022.04.003. [8] ZHAI C B, MA Y Y, LI H Y. Unique positive solution for a p-Laplacian fractional differential boundary value problem involving Riemann-Stieltjes integral[J]. AIMS Mathematics, 2020, 5(5): 4754-4769. DOI: 10.3934/math.2020304. [9] LV Z W. Existence of positive solution for fractional differential systems with multipoint boundary value conditions[J]. Journal of Function Spaces, 2020, 2020: 9520430. DOI: 10.1155/2020/9520430. [10] WANG W X. Unique positive solutions for boundary value problem of p-Laplacian fractional differential equation with a sign-changed nonlinearity[J]. Nonlinear Analysis: Modelling and Control, 2022, 27(6): 1110-1128. DOI:10.15388/namc.2022. 2729503. [11] WANG W X. Properties of Green’s function and the existence of different types of solutions for nonlinear fractional BVP with a parameter in integral boundary conditions[J]. Boundary Value Problems, 2019, 2019(1): 76. DOI: 10.1186/s13661-019-1184-2. [12] WEI Z L, DONG W, CHE J L. Periodic boundary value problems for fractional differential equations involving a Riemann-Liouville fractional derivative[J]. Nonlinear Analysis, Theory: Methods and Applications, 2010, 73(10): 3232-3238. DOI: 10.1016/j.na.2010.07.003. [13] WANG W X, GUO X T. Eigenvalue problem for fractional differential equations with nonlinear integral and disturbance parameter in boundary conditions[J]. Boundary Value Problems, 2016, 2016: 42. DOI: 10.1186/s13661-016-0548-0. [14] 左佳斌, 贠永震. 一类分数阶微分方程的反周期边值问题[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 56-64. DOI:10.16088/j.issn.1001-6600.2020.06.007. [15] SUBRAMANIAN M, ALZABUT J, ABBAS M, et al. Existence of solutions for coupled higher-order fractional integro-differential equations with nonlocal integral and multi-point boundary conditions depending on lower-order fractional derivatives and integrals[J]. Mathematics, 2022, 10(11): 1823. DOI: 10.3390/math10111823. [16] AHMAD B, ALGHANMI M, ALSAEDI A, et al. Existence and uniqueness results for a nonlinear coupled system involving Caputo fractional derivatives with a new kind of coupled boundary conditions[J]. Applied Mathematics Letters, 2021, 116: 107018. DOI: 10.1016/j.aml.2021.107018. [17] LIU X P, JIA M, GE W G. The method of lower and upper solutions for mixed fractional four-point boundary value problem with p-Laplacian operator[J]. Applied Mathematics Letters, 2017, 65: 56-62. DOI:10.1016/j.aml.2016.10.001. |
[1] | 蒋维, 李雨涵, 李红英. 一类带双临界指数的凹凸非线性分数阶Schrödinger-Poisson系统的两个正解[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 113-121. |
[2] | 闫荣君, 韦煜明, 冯春华. 带p-Laplacian算子的时滞分数阶微分方程边值问题3个正解的存在性[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 75-82. |
[3] | 韩彩虹, 李略, 黄丽丽. 一类差分方程的全局渐近稳定性[J]. 广西师范大学学报(自然科学版), 2017, 35(1): 53-57. |
[4] | 韩彩虹, 李略, 庞琳娜, 侯欣欣. 极大型差分方程xn=max${\frac{1}{x_{n-k}^{\alpha}},\frac{A_n}{x^{\beta}_{n-k-2}}}$的全局吸引性[J]. 广西师范大学学报(自然科学版), 2015, 33(3): 71-74. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |