广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (6): 105-112.doi: 10.16088/j.issn.1001-6600.2023030402

• • 上一篇    下一篇

一类具有临界指数和不定位势的Kirchhoff型问题解的存在性

郭洁, 索洪敏*, 朱怡颖, 郭加超   

  1. 贵州民族大学 数据科学与信息工程学院, 贵州 贵阳 550025
  • 收稿日期:2023-03-04 修回日期:2023-05-05 发布日期:2023-12-04
  • 通讯作者: 索洪敏(1965—), 男(布依族), 贵州都匀人, 贵州民族大学教授。E-mail: gzmysxx88@sina.com
  • 基金资助:
    国家自然科学基金(11661021, 11861021); 贵州省科技计划项目(黔科合基础〔2017〕1084)

Existence of Solutions for a Class of Kirchhoff Type Problems with Critical Exponent and Indefinite Potential

GUO Jie, SUO Hongmin*, ZHU Yiying, GUO Jiachao   

  1. School of Data Science and Information Engineering, Guizhou Minzu University, Guiyang Guizhou 550025, China
  • Received:2023-03-04 Revised:2023-05-05 Published:2023-12-04

摘要: 本文研究一类具有临界指数和不定位势的Kirchhoff型问题解的存在性。首先证明该问题的能量泛函满足山路结构; 其次证明能量泛函满足局部(PS)c条件,从而获得泛函的紧性条件; 最后通过Ekeland变分原理和山路引理,得到该问题2个非平凡解的存在性。

关键词: Kirchhoff型方程, 临界指数, 不定位势, 变分法

Abstract: In this paper, the existence of solutions for a class of Kirchhoff type problems with critical exponent and indefinite potential is studied. Firstly, the energy functional is proved to satisfy the mountain pass geometry. Secondly, the compactness condition of function is obtained by proving that the energy functional satisfies the local (PS)c condition. Finally, the existence of two nontrivial solutions is obtained via Ekeland’s variational principle and the mountain pass lemma.

Key words: Kirchhoff type equations, critical exponent, indefinite potential, variational method

中图分类号:  O177.9

[1] KIRCHHOFF G. Mechanik[M]. Teubner: Leipzig, 1883.
[2] LIAO J F, ZHANG P, LIU J, et al. Existence and multiplicity of positive solutions for a class of Kirchhoff type problems with singularity[J]. Journal of Mathematical Analysis and Applications, 2015, 430(2):1124-1148.DOI:10.1016/j.jmaa.2015.05.038.
[3] LI G B, LUO P, PENG S J, et al. A singularly perturbed Kirchhoff problem revisited[J]. Journal of Differential Equations, 2020, 268(2):541-589.DOI:10.1016/j.jde.2019.08.016.
[4] HE X M, ZOU W M. Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3[J]. Journal of Differential Equations, 2012, 252(2):1813-1834.DOI:10.1016/j.jde.2011.08.035.
[5] 王跃, 叶红艳, 雷俊, 等. 带线性项Kirchhoff型问题的无穷多古典解[J]. 广西师范大学学报(自然科学版), 2020, 38(6):65-73.DOI:10.16088/j.issn.1001-6600.2020.06.008.
[6] 姜影星, 黄文念. 非线性薛定谔-麦克斯韦方程的基态解[J]. 广西师范大学学报(自然科学版), 2018, 36(4):59-66.DOI:10.16088/j.issn.1001-6600.2018.04.008.
[7] PERERA K, ZHANG Z T. Nontrivial solutions of Kirchhoff-type problems via the Yang index[J]. Journal of Differential Equations, 2006, 221(1):246-255.DOI:10.1016/j.jde.2005.03.006.
[8] 吉蕾. 高维空间中带临界指数的非齐次Kirchhoff型方程的正解[J]. 西南师范大学学报(自然科学版), 2020, 45(2):20-25.DOI:10.13718/j.cnki.xsxb.2020.02.004.
[9] WANG Y, SUO H M, LEI C Y. Multiple positive solutions for a nonlocal problem involving critical exponent[J]. Electronic Journal of Differential Equations, 2017, 2017(275):1-11.
[10] CHEN P, LIU X C. Multiplicity of solutions to kirchhoff type equations with critical sobolev exponent[J]. Communications on Pure and Applied Analysis, 2018, 17(1): 113-125.DOI:10.3934/cpaa.2018007.
[11] 曾兰, 唐春雷. 带有临界指数的Kirchhoff型方程正解的存在性[J]. 西南师范大学学报(自然科学版), 2016, 41(4): 29-34.DOI:10.13718/j.cnki.xsxb.2016.04.007.
[12] LIU Z S, GUO S J, FANG Y Q. Positive solutions of Kirchhoff type elliptic equations in R4 with critical growth[J]. Mathematische Nachrichten, 2017, 290(2/3):367-381.DOI:10.1002/mana.201500358.
[13] ANELLO G. A uniqueness result for a nonlocal equation of Kirchhoff type and some related open problem[J]. Journal of Mathematical Analysis and Applications, 2011, 373(1):248-251.DOI:10.1016/j.jmaa.2010.07.019.
[14] 成艺群, 滕凯民. 非线性临界Kirchhoff型问题的正基态解[J]. 数学物理学报, 2021, 41(3): 666-685.DOI:10.3969/j.issn.1003-3998.2021.03.008.
[15] LEI C Y, LIAO J F, TANG C L. Multiple positive solutions for Kirchhoff type of problems with singularity and critical exponents[J]. Journal of Mathematical Analysis and Applications, 2015, 421(1):521-538.DOI:10.1016/j.jmaa.2014.07.031.
[16] CAO X F, XU J X, WANG J. Multiple positive solutions for Kirchhoff type problems involving concave and critical nonlinearities in R3[EB/OL]. (2016-05-20)[2023-03-04].http://arxiv.org/abs/1605.06404.
[17] LI H Y, TANG Y T, LIAO J F. Existence and multiplicity of positive solutions for a class of singular Kirchhoff type problems with sign-changing potential[J]. Mathematical Methods in the Applied Sciences, 2018, 41(8):2971-2986. DOI: 10.1002/mma.4795.
[18] LEI C Y, CHU C M, SUO H M. On Kirchhoff type problems involving critical and singular nonlinearities terms[J]. Annales Polonici Mathematici, 2015, 114(3):269-291.DOI:10.4064/ap114-3-5.
[19] QIAN X T, CHAO W. Existence of positive solutions for nonlocal problems with indefinite nonlinearity[J]. Boundary Value Problems, 2020, 2020(1): 40. DOI:10.1186/s136 61-020-01343-2.
[20] FURTADO M F, RUVIARO R, DA SILVA J P P. Two solutions for an elliptic equation with fast increasing weight and concave-convex nonlinearities[J]. Journal of Mathematical Analysis and Applications, 2014, 416(2):698-709.DOI:10.1016/j.jmaa.2014.02.068.
[21] DE PAIVA F O. Nonnegative solutions of elliptic problems with sublinear indefinite nonlinearity[J]. Journal of Functional Analysis, 2011, 261(9):2569-2586.DOI:10.1016/j.jfa.2011.07.002.
[22] BREZIS H, NIRENBERG L. Positive solutions of nonlinear elliptic equations involving critical sobolev exponents[J]. Communications on Pure and Applied Mathematics, 1983, 36(4):437-477.DOI:10.1002/cpa.3160360405.
[23] GHOUSSOUB N, YUAN C. Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents[J]. Transactions of the American Mathematical Society, 2000, 352(12):5703-5743.DOI:10.2307/221908.
[24] EKELAND I. On the variational principle[J]. Journal of Mathematical Analysis and Applications, 1974, 47(2):324-353. DOI:10.1016/0022-247X(74)90025-0.
[1] 蒋维, 李雨涵, 李红英. 一类带双临界指数的凹凸非线性分数阶Schrödinger-Poisson系统的两个正解[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 113-121.
[2] 王俊峰, 李平. 爆发性逾渗模型的Shortest-path指数和Backbone指数[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 81-86.
[3] 曾上游, 张争珍, 曾绍稳, 周黎明, 王榕峰, 唐文艳, 房新荷, 梁丹. Fermi-Pasta-Ulam模型中量子涨落对包络孤子的耗散效应[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 77-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 董淑龙, 马姜明, 辛文杰. 景观视觉评价研究进展与趋势——基于CiteSpace的知识图谱分析[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 1 -13 .
[2] 马乾然, 韦笃取. 基于线性耦合储备池计算的电机系统混沌预测研究[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 1 -7 .
[3] 颜闽秀, 靳琪森. 多维混沌系统的构建及其多通道自适应控制[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 8 -21 .
[4] 赵伟, 田帅, 张强, 王耀申, 王思博, 宋江. 基于改进YOLOv5的平贝母检测模型[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 22 -32 .
[5] 高飞, 郭晓斌, 袁冬芳, 曹富军. 改进PINNs方法求解边界层对流占优扩散方程[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 33 -50 .
[6] 周桥, 翟江涛, 荚东升, 孙浩翔. 基于卷积门控循环神经网络的Web攻击检测方法[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 51 -61 .
[7] 林玩聪, 韩明杰, 靳婷. 基于数据增强的多层次论点立场分类方法[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 62 -69 .
[8] 温雪岩, 谷训开, 李祯, 黄英来, 黄鹤林. 融合释义与双向交互的成语阅读理解方法研究[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 70 -79 .
[9] 宋冠武, 陈知明, 李建军. 基于ResNet-50的级联注意力遥感图像分类[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 80 -91 .
[10] 徐紫钰, 吴克晴. Caputo型分数阶微分系统正解的唯一性[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 92 -104 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发