|
广西师范大学学报(自然科学版) ›› 2020, Vol. 38 ›› Issue (2): 81-86.doi: 10.16088/j.issn.1001-6600.2020.02.009
王俊峰*, 李平
WANG Junfeng*, LI Ping
摘要: Shortest-path指数dmin和Backbone指数dB是统计物理中刻画相变普适类的两个重要的临界指数,由于缺少精确解,人们只能通过数值方法,尤其是蒙特卡洛模拟对其进行数值估计。 本文通过在完全构型上取样图形距离和在bridge-free构型上取样最大集团大小,首次估计了正方晶格上遵守乘积规则的爆发性逾渗模型的Shortest-path指数和Backbone指数,分别为dmin=1.189(3)和dB=1.546(5)。本文的结果为人们后续解析地研究具有非平凡规则的逾渗模型的临界几何性质提供了重要的检验基础。
中图分类号:
[1] 于渌,郝柏林,陈晓松.边缘奇迹相变和临界现象[M].北京:科学出版社,2005:95-110. [2] FORTUIN C M,KASTELEYN P W.On the random-cluster model: I.Introduction and relation to other models[J].Physica,1972,57(4): 536-564.DOI: 10.1016/0031-8914(72)90045-6. [3] 张学良,谭惠丽,白克钊,等.一种体现心肌细胞传导记忆的元胞自动机模型[J].广西师范大学学报(自然科学版),2017,35(4):1-9.DOI:10.16088/j.issn.1001-6600.2017.04.001. [4] 邝先验,吴赟,曹韦华,等.城市混合非机动车流的元胞自动机仿真模型[J].广西师范大学学报(自然科学版),2015,33(1):7-14.DOI:10.16088/j.issn.1001-6600.2015.01.002. [5] 周金旺,陈秀丽,孔令江,等.基于元胞自动机的行人流疏散模拟研究[J].广西师范大学学报(自然科学版),2008,26(4):14-17.DOI: 10.16088 /j.issn.1001-6600.2008.04.005. [6] BROADBENT S R,HAMMERSLEY J M.Percolation processes: 1.crystals and mazes[J].Proceedings of the Cambridge Philosophical Society,1957,53(3): 629-641.DOI: 10.1017/S0305004100032680. [7] STAUFFER D,AHARONY A.Introduction to percolation theory[M].2nd ed.London: Taylor & Francis,2003: 70-149. [8] GRIMMETT G R.Percolation[M].Berlin: Springer,1999: 117-280. [9] ACHLIOPTAS D,D’SOUZA R M,SPENCER J.Explosive percolation in random networks[J].Science,2009, 323(5920): 1453-1455.DOI: 10.1126/science.1167782. [10]DA COSTA R A,DOROGOVTSEV S N,GOLTSEV A V,et al.Explosive percolation transition is actually continuous[J].Physical Review Letters,2010,105(25): 225701.DOI: 10.1103/PhysRevLett.105.255701. [11]CLUSELLA P,GRASSBERGER P,PEREZ-RECHE F J,et al.Immunization and targeted destruction of networks using explosive percolation[J].Physical Review Letters,2016,117(20):208301.DOI:10.1103/PhysRevLett.117.208301. [12]DI FRANCESCO P,SALEUR H,ZUBER J B.Relations between the Coulomb gas picture and conformal invariance of two-dimensional critical models[J].Journal of Statistical Physics,1987,49(1/2): 57-79.DOI: 10.1007/bf01009954. [13]LAWLER G F,SCHRAMM O,WERNER W.The dimension of the planar Brownian frontier is 4/3[J].Mathematical Research Letters,2001,8(4): 401-412.DOI: 10.4310/MRL.2001.v8.n1.a3. [14]DENG Y J,BLÖTE H W J,NIENHUIS B.Backbone exponents of the two-dimensional q-state Potts model: A Monte Carlo investigation[J].Physical Review E,2004,69(2): 026114.DOI: 10.1103/PhysRevE.69.026114. [15]ZHOU Z Z,YANG J,DENG Y J,et al.Shortest-path fractal dimension for percolation in two and three dimensions[J].Physical Review E,2012,86(6): 061101.DOI : 10.1103/PhysRevE.86.061101. [16]GRASSBERGER P.Pair connectedness and shortest-path scaling in critical percolation[J].Journal of Physics A: Mathematical and General,1999,32(35): 6233-6238.DOI: 10.1088/0305-4470/32/35/301. [17]WANG J F,ZHOU Z Z,ZHANG W,et al.Bond and site percolation in three dimensions[J].Physical Review E,2013,87(5): 052107.DOI: 10.1103/PhysRevE.87.052107. [18]XU X,WANG J F,ZHOU Z Z,et al.Geometric structure of percolation clusters[J].Physical Review E,2014, 89(1): 012120.DOI: 10.1103/PhysRevE.89.012120. [19]HUANG W,HOU P C,WANG J F,et al.Critical percolation clusters in seven dimensions and on a complete graph[J].Physical Review E,2018,97(2):022107.DOI: 10.1103/PhysRevE.97.022107. [20]ZIFF R M.Scaling behavior of explosive percolation on the square lattice[J].Physical Review E,2010,82 (5): 051105.DOI: 10.1103/PhysRevE.82.051105. [21]SWENDSEN R H,WANG J S.Nonuniversal critical dynamics in Monte Carlo simulations[J].Physical Review Letters,1987,58(2): 86-88.DOI: 10.1103/PhysRevLett.58.86. |
No related articles found! |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |