广西师范大学学报(自然科学版) ›› 2015, Vol. 33 ›› Issue (1): 15-19.doi: 10.16088/j.issn.1001-6600.2015.01.003

• • 上一篇    下一篇

耦合腔光机械系统中两个机械振子的态交换

肖瑞杰1, 刘野2, 修晓明1, 孔令江3   

  1. 1.渤海大学数理学院,辽宁锦州121013;
    2.锦州师范高等专科学校物理系,辽宁锦州121000;
    3.广西师范大学物理科学与技术学院,广西桂林541004
  • 收稿日期:2014-11-02 出版日期:2015-03-15 发布日期:2018-09-17
  • 通讯作者: 肖瑞杰(1978—),女,辽宁朝阳人,渤海大学讲师。E-mail:xrjxrj2003@163.com
  • 基金资助:
    国家自然科学基金资助项目(11305016,11161051)

State Transfer of Two Mechanical Oscillators in Coupled CavityOptomechanical System

XIAO Rui-jie1, LIU Ye2, XIU Xiao-ming1, KONG Ling-jiang3   

  1. 1.College of Mathematics and Physics, Bohai University, Jinzhou Liaoning 121013, China;
    2. Department of Physics,Jinzhou Teachers Training College,Jinzhou Liaoning 121000, China;
    3.College of Physics Science and Technology, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2014-11-02 Online:2015-03-15 Published:2018-09-17

摘要: 本文研究了一个由光纤连接的两个法布里-帕罗腔所组成的耦合光机械系统,每一个腔都是由一个固定的镜子和一个移动的镜子组成,移动的镜子可以看作机械振子,同时,这两个腔模都被经典激光场驱动,则在腔场与腔场之间,镜子与腔场之间,以及经典激光场和腔场之间都会产生相互作用。通过变换绘景、绝热剔除、旋波近似忽略高频项等量子光学的处理方法消除哈密顿中的两个腔模,得到了两个声子模之间有效的哈密顿;在假设两个机械振子的初态是相干态的情况下,解析出两个耦合的机械振子能够进行态交换;最后,为了验证解析结果,数值模拟了系统量子态的保真度,模拟结果表明,解析结果与数值模拟是自洽的,两个机械振子之间可以周期性地进行态交换。

关键词: 腔光机械系统, 哈密顿, 绝热剔除, 保真度

Abstract: This paper investigates a coupled cavity optomechanical system consisting of two Fabry-Pérot cavities and the two cavities are coupled via an optical fiber. Every cavity is made of one fixed mirror and a movable mirror, and the movable mirror can be regarded as a mechanical oscillators. Meanwhile, the two cavity modes are driven by classical laser fields. So, the interaction is inevitable between cavities, cavity and moving mirror, cavity and classical field. Firstly, in order to eliminate the two cavity fields, an effective Hamiltonian of the two phonon modes is derived by means of picture transformation, adiabatic eliminating, and rotating wave approximation ignoring the high frequency items, etc. Secondly, if the two mechanical oscillators initially are in coherent states, the coupled mechanical oscillators can be used to transmit state. Finally, in order to verify the analytical result, the fidelity of quantum state is numevically simulated, the result shows that the quantum state can be transferred periodically between the two mechanical oscillators, which is the same as the analytical result.

Key words: cavity optomechanical system, Hamiltonian, adiabatic eliminating, fidelity

中图分类号: 

  • O413
[1] WILSON-RAE I, NOOSHI N, ZWERGER W, et al. Theory of ground state cooling of a mechanical oscillator using dynamical backaction[J]. Phys Rev Lett, 2007, 99(9): 093901.
[2] AGARWAL G S, HUANG S M. Electromagnetically induced transparency in mechanical effects of light[J]. Phys Rev A, 2010, 81(4): 041803.
[3] 肖瑞杰,刘野,彭亚晶,等.Λ型三能级原子诱导光机械系统的稳态纠缠[J]. 广西师范大学学报:自然科学版,2013, 31(1):21-25.
[4] PALOMAKI T A, HARLOW J W, TEUFEL J D, et al. Coherent state transfer between itinerant microwave fields and a mechanical oscillator[J]. Nature, 2013, 495(14): 210-214.
[5] CHANG D E, SAFAVI-NAEINI A H, HAFEZI M, et al. Slowing and stopping light using an optomechanical crystal array[J]. New J Phys, 2011, 13(2), 023003.
[6] MA Y H, ZHOU L. Enhanced entanglement between a movable mirror and a cavity field assisted by two-level atoms[J]. Journal of Applied Physics, 2012, 111(10):103109.
[7] BKJE K, NUNNENKAMP A, TEUFEL J D, et al. Signatures of Nonlinear Cavity optomechanics in the weak coupling regime[J]. Phys Rev Lett, 2013, 111(5): 053603.
[8] TEUFEL J, DONNER T, LI D, et al. Sideband cooling of micromechanical motion to the quantum ground state[J]. Nature (London), 2011,475(21):359-363.
[9] CHAN J, ALEGRE T P M, SAFAVI-NAEINI A H, et al. Laser cooling of a nanomechanical oscillator into its quantum ground state[J]. Nature, 2011,478(6):89-92.
[10] WEIS S, RIVIERE R, DELGLISE S, et al. Optomechanically induced transparency[J]. Science, 2010,330:1520-1523.
[11] JAMES. D F V. Effective Hamiltonian theory and its application in quantum information[J]. Can J Phys, 2007, 85(6):625-632.
[12] 张登玉,郭萍,高峰. 强热辐射环境中两能级原子量子态保真度[J]. 物理学报,2007,56(4):1906-1910.
[1] 肖瑞杰, 刘野, 彭亚晶, 孔令江. Λ型三能级原子诱导光机械系统的稳态纠缠[J]. 广西师范大学学报(自然科学版), 2013, 31(1): 21-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发