广西师范大学学报(自然科学版) ›› 2020, Vol. 38 ›› Issue (2): 87-95.doi: 10.16088/j.issn.1001-6600.2020.02.010

• CCIR2019 • 上一篇    下一篇

一种基于化学势LBM多相流模型的改进方法

赵金想, 陈燕雁, 覃章荣, 张超英*   

  1. 广西师范大学广西多源信息挖掘与安全重点实验室,广西桂林541004
  • 收稿日期:2019-01-04 发布日期:2020-04-02
  • 通讯作者: 张超英(1958—),男,广西永福人,广西师范大学教授。E-mail:zhangcy@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(11462003, 11862003);广西自然科学基金重点项目(2017GXNSFDA198038);广西自然科学基金(2018JJA110023)

A Modified Method Based on Chemical-PotentialLBM Multiphase Flow Model

ZHAO Jinxiang, CHEN Yanyan, QIN Zhangrong, ZHANG Chaoying*   

  1. Guangxi Key Laboratory of Multi-Source Information Mining and Security, Guangxi Normal University,Guilin Guangxi 541004, China
  • Received:2019-01-04 Published:2020-04-02

摘要: 在基于化学势的晶格Boltzmann多相流模型中,通过引入“折合变量”,提出一种改进的化学势多相流模型。对该模型的性能进行验证,结果发现:与原化学势模型相比,使用改进模型模拟的温度范围、气液两相密度比得到较大扩展,稳定性显著提高,有效地降低了虚速度的影响。该模型也能很好地符合热力学一致性和满足Laplace定律,具有较好的实用性和应用前景。

关键词: 晶格Boltzmann方法, 化学势, 折合变量, 热力学一致性

Abstract: Based on the chemical-potential lattice Boltzmann multiphase flow model, a modified chemical-potential multiphase flow model is proposed by introducing “reduced variables”. The performance of the model is verified, and the results show that, compared with the original chemical potential model, the temperature range and the gas-liquid density ratio of the modified model are greatly extended, the stability is remarkably improved, and the effect of spurious current is effectively reduced. The model is in good agreement with the thermodynamic consistency, meets with Laplace’s law, and has practical and applicable prospects.

Key words: lattice Boltzamnn method, chemical potential, reduced variables, thermodynamic consistency

中图分类号: 

  • O35
[1] AIDUN C K,CLAUSEN J R.Lattice-Boltzmann method for complex flows[J].Annual Review of Fluid Mechanics, 2010,42(1):439-472.DOI:10.1146/annurev-fluid-121108-145519.
[2] GUO Z,ZHAO T S.Lattice Boltzmann model for incompressible flows through porous media[J].Physical Review E,2002,66(3):036304.DOI:10.1103/PhysRevE.66.036304.
[3] 张超英,谭惠丽,刘慕仁,等.用格子Boltzmann方法模拟椭圆柱体在牛顿流体中的二维运动[J].广西师范大学学报(自然科学版),2004,22(1):1-5.DOI: 10.3969/j.issn.1001-6600.2004.01.001.
[4] 闻炳海,张超英,刘海燕,等.大血管中血液流动的LBM模拟[J].广西师范大学学报(自然科学版),2008,26(4):22-25.DOI:10.3969/j.issn.1001-6600.2008.04.006.
[5] 黄兵方,闻炳海,邱文,等.基于晶格Boltzmann方法的接触角实时测量研究[J].广西师范大学学报(自然科学版),2018,36(1):34-43.DOI: 10.16088/j.issn.1001-6600.2018.01.005.
[6] GUNSTENSEN A K,ROTHMAN D H,ZALESKI S,et al.Lattice Boltzmann model of immiscible fluids[J]. Physical Review A,1991,43(8):4320-4327.DOI:10.1103/PhysRevA.43.4320.
[7] SHAN X,CHEN H.Lattice Boltzmann model for simulating flows with multiple phases and components[J]. Physical Review E,Statistical Physics, Plasmas, Fluids,and Related Interdisciplinary Topics,1993, 47(3):1815-1819.DOI:10.1103/PhysRevE.47.1815.
[8] SWIFT M R,OSBORN W R,YEOMANS J M.Lattice Boltzmann simulation of nonideal fluids[J].Physical Review Letters,1995,75(5):830-833.DOI:0.1103/PhysRevLett.75.830.
[9] SWIFT M R,ORLANDINI E,OSBORN W R,et al.Lattice Boltzmann simulations of liquid-gas and binary fluid systems[J].Physical Review E,1996,54(5):5041-5052.DOI:10.1103/PhysRevE.54.5041.
[10]ZHANG R,CHEN H.Lattice Boltzmann method for simulations of liquid-vapor thermal flows[J].Physical Review E,2003,67(6):066711.DOI:10.1103/PhysRevE.67.066711.
[11]YUAN P,SCHAEFER L.Equations of state in a lattice Boltzmann model[J].Physics of Fluids,2006, 18(4):042101.DOI:10.1063/1.2187070.
[12]KUPERSHTOKH A L,MEDVEDEV D A,KARPOV D I.On equations of state in a lattice Boltzmann method[J]. Computers and Mathematics with Applications,2009,58(5):965-974.DOI:10.1016/j.camwa.2009.02.024.
[13]KUPERSHTOKH A L.Criterion of numerical instability of liquid state in LBE simulations[J]. Computers and Mathematics with Applications,2010,59(7):2236-2245.DOI:10.1016/j.camwa.2009.08.058.
[14]HU A,LI L,CHEN S,et al.On equations of state in pseudo-potential multiphase lattice Boltzmann model with large density ratio[J].International Journal of Heat and Mass Transfer,2013,67:159-163. DOI:10.1016/j.ijheatmasstransfer.2013.08.005.
[15]QIN Z,ZHAO W,CHEN Y,et al.A pseudopotential multiphase lattice Boltzmann model based on high-order difference[J].International Journal of Heat and Mass Transfer,2018,127:234-243.DOI:10.1016/j.ijheatmasstransfer.2018.08.002.
[16]INAMURO T,KONISHI N,OGINO F.A Galilean invariant model of the lattice Boltzmann method for multiphase fluid flows using free-energy approach[J].Computer Physics Communications,2000,129(1): 32-45.DOI:10.1016/S0010-4655(00)00090-4.
[17]WEN B,QIN Z,ZHANG C,et al.Thermodynamic-consistent lattice Boltzmann model for nonideal fluids[J]. Europhysics Letters,2015,112(4):44002.DOI:10.1209/0295-5075/112/44002.
[18]WEN B,ZHOU X,HE B,et al.Chemical-potential-based lattice Boltzmann method for nonideal fluids[J]. Physical Review E,2017,95(6):063305.DOI:10.1103/PhysRevE.95.063305.
[19]闻炳海,张超英,方海平.晶格Boltzmann方法中流体力的计算[J].中国科学: 物理学 力学 天文学,2017(7): 171-192.
[20]ROWLINSON B J S,WIDOM B.Molecular theory of capillarity[M].Clarendon:Oxford,1982.DOI:10.1007/ BF01018563.
[21]SHAN X,DOOLEN G.Multi-component lattice-Boltzmann model with interparticle interaction[J].Journal of Statistical Physics,1995,81(1/2):379-393.DOI:10.1007/BF02179985.
[22]LEE T,LIN C L.A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio[J].Journal of Computational Physics,2005,206(1): 16-47.DOI:10.1016/j.jcp.2004.12.001.
[23]RAHMATI A R,ZARAREH A.Application of a modified pseudopotential lattice Boltzmann model for simulation of splashing phenomenon[J].European Journal of Mechanics-B/Fluids,2018,70:19-35.DOI:10.1016/j.euromechflu.2018.01.007.
[24]JOSSERAND C,RAY P,ZALESKI, et al.Droplet impact on a thin liquid film: anatomy of the splash[J]. Journal of Fluid Mechanics,2016,802:775-805.DOI:10.1017/jfm.2016.468.
[25]COPPOLA G,ROCCO G, de LUCA L.Insights on the impact of a plane drop on a thin liquid film[J].Physics of Fluids,2011,23(2):022105.DOI:10.1063/1.3555196.
[26]LI Q,LUO K H,LI X J.Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model[J].Phys Rev E Stat Nonlin Soft Matter Phys,2013,87(5):053301. DOI:10.1103/PhysRevE.87.053301.
[1] 邱文, 叶勇, 周思浩, 闻炳海. 基于晶格Boltzmann方法研究微液滴形变中接触角[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 27-37.
[2] 黄兵方,闻炳海,邱文,赵琬玲,陈燕雁. 基于晶格Boltzmann方法的接触角实时测量研究[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 34-43.
[3] 张超英, 黎槟华, 覃章荣. 基于CUDA的晶格Boltzmann并行算法的综合优化设计[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 142-148.
[4] 邱冰, 王立龙, 薛泽, 李华兵. 用晶格Boltzmann方法研究微血管脉动流中悬浮颗粒运动特征的转变[J]. 广西师范大学学报(自然科学版), 2011, 29(4): 7-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李钰慧, 陈泽柠, 黄中豪, 周岐海. 广西弄岗熊猴的雨季活动时间分配[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 80 -86 .
[2] 韦宏金, 周喜乐, 金冬梅, 严岳鸿. 湖南蕨类植物增补[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 101 -106 .
[3] 林永生, 裴建国, 邹胜章, 杜毓超, 卢丽. 清江下游红层岩溶及其水化学特征[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 113 -120 .
[4] 张茹, 张蓓, 任鸿瑞. 山西轩岗矿区耕地流失时空特征及其影响因子研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 121 -132 .
[5] 刘国伦, 宋树祥, 岑明灿, 李桂琴, 谢丽娜. 带宽可调带阻滤波器的设计[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 1 -8 .
[6] 刘铭, 张双全, 何禹德. 基于改进SOM神经网络的异网电信用户细分研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 17 -24 .
[7] 苗新艳, 张龙, 罗颜涛, 潘丽君. 一类交替变化的竞争—合作混杂种群模型研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 25 -31 .
[8] 黄燕萍, 韦煜明. 一类分数阶微分方程多点边值问题的多解性[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 41 -49 .
[9] 温玉卓, 唐胜达, 邓国和. 随机环境下具有阈值分红策略的风险过程的破产时间分析[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 56 -62 .
[10] 万雷,罗玉玲,黄星月. 脉冲神经网络硬件系统性能监测平台[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 9 -16 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发