广西师范大学学报(自然科学版) ›› 2020, Vol. 38 ›› Issue (2): 81-86.doi: 10.16088/j.issn.1001-6600.2020.02.009

• CCIR2019 • 上一篇    下一篇

爆发性逾渗模型的Shortest-path指数和Backbone指数

王俊峰*, 李平   

  1. 合肥工业大学电子科学与应用物理学院,安徽合肥230009
  • 收稿日期:2019-03-16 发布日期:2020-04-02
  • 通讯作者: 王俊峰(1979—),男,湖北钟祥人,合肥工业大学副教授,博士。 E-mail: wangjf@hfut.edu.cn
  • 基金资助:
    国家自然科学基金(11405039)

Shortest-path Exponent and Backbone Exponentof Explosive Percolation Model

WANG Junfeng*, LI Ping   

  1. School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei Anhui 230009, China
  • Received:2019-03-16 Published:2020-04-02

摘要: Shortest-path指数dmin和Backbone指数dB是统计物理中刻画相变普适类的两个重要的临界指数,由于缺少精确解,人们只能通过数值方法,尤其是蒙特卡洛模拟对其进行数值估计。 本文通过在完全构型上取样图形距离和在bridge-free构型上取样最大集团大小,首次估计了正方晶格上遵守乘积规则的爆发性逾渗模型的Shortest-path指数和Backbone指数,分别为dmin=1.189(3)和dB=1.546(5)。本文的结果为人们后续解析地研究具有非平凡规则的逾渗模型的临界几何性质提供了重要的检验基础。

关键词: 逾渗, 临界指数, 蒙特卡洛模拟, 有限尺寸标度

Abstract: The Shortest-path exponent dmin and the Backbone exponent dB are two important critical exponents for characterizing the universality class in phase transition in statistical physics. Due to the lack of exact solutions, the values of dmin and dB can only be estimated by numerical methods, such as Monte Carlo simulation (MC). In this paper, by sampling the graph distance on the complete configuration and the size of the largest cluster on the bridge-free configuration, for the first time, the shortest-path and backbone exponents are estimated for the square-lattice explosive percolation with product rule as dmin=1.189(3) and dB=1.546(5), respectively. The results provide important testing foundations for the future analytical investigations of the critical geometrical properties of the percolation models with non-trivial rules.

Key words: percolation, critical exponent, Monte Carlo simulation, finite-size scaling

中图分类号: 

  • O414.21
[1] 于渌,郝柏林,陈晓松.边缘奇迹相变和临界现象[M].北京:科学出版社,2005:95-110.
[2] FORTUIN C M,KASTELEYN P W.On the random-cluster model: I.Introduction and relation to other models[J].Physica,1972,57(4): 536-564.DOI: 10.1016/0031-8914(72)90045-6.
[3] 张学良,谭惠丽,白克钊,等.一种体现心肌细胞传导记忆的元胞自动机模型[J].广西师范大学学报(自然科学版),2017,35(4):1-9.DOI:10.16088/j.issn.1001-6600.2017.04.001.
[4] 邝先验,吴赟,曹韦华,等.城市混合非机动车流的元胞自动机仿真模型[J].广西师范大学学报(自然科学版),2015,33(1):7-14.DOI:10.16088/j.issn.1001-6600.2015.01.002.
[5] 周金旺,陈秀丽,孔令江,等.基于元胞自动机的行人流疏散模拟研究[J].广西师范大学学报(自然科学版),2008,26(4):14-17.DOI: 10.16088 /j.issn.1001-6600.2008.04.005.
[6] BROADBENT S R,HAMMERSLEY J M.Percolation processes: 1.crystals and mazes[J].Proceedings of the Cambridge Philosophical Society,1957,53(3): 629-641.DOI: 10.1017/S0305004100032680.
[7] STAUFFER D,AHARONY A.Introduction to percolation theory[M].2nd ed.London: Taylor & Francis,2003: 70-149.
[8] GRIMMETT G R.Percolation[M].Berlin: Springer,1999: 117-280.
[9] ACHLIOPTAS D,D’SOUZA R M,SPENCER J.Explosive percolation in random networks[J].Science,2009, 323(5920): 1453-1455.DOI: 10.1126/science.1167782.
[10]DA COSTA R A,DOROGOVTSEV S N,GOLTSEV A V,et al.Explosive percolation transition is actually continuous[J].Physical Review Letters,2010,105(25): 225701.DOI: 10.1103/PhysRevLett.105.255701.
[11]CLUSELLA P,GRASSBERGER P,PEREZ-RECHE F J,et al.Immunization and targeted destruction of networks using explosive percolation[J].Physical Review Letters,2016,117(20):208301.DOI:10.1103/PhysRevLett.117.208301.
[12]DI FRANCESCO P,SALEUR H,ZUBER J B.Relations between the Coulomb gas picture and conformal invariance of two-dimensional critical models[J].Journal of Statistical Physics,1987,49(1/2): 57-79.DOI: 10.1007/bf01009954.
[13]LAWLER G F,SCHRAMM O,WERNER W.The dimension of the planar Brownian frontier is 4/3[J].Mathematical Research Letters,2001,8(4): 401-412.DOI: 10.4310/MRL.2001.v8.n1.a3.
[14]DENG Y J,BLÖTE H W J,NIENHUIS B.Backbone exponents of the two-dimensional q-state Potts model: A Monte Carlo investigation[J].Physical Review E,2004,69(2): 026114.DOI: 10.1103/PhysRevE.69.026114.
[15]ZHOU Z Z,YANG J,DENG Y J,et al.Shortest-path fractal dimension for percolation in two and three dimensions[J].Physical Review E,2012,86(6): 061101.DOI : 10.1103/PhysRevE.86.061101.
[16]GRASSBERGER P.Pair connectedness and shortest-path scaling in critical percolation[J].Journal of Physics A: Mathematical and General,1999,32(35): 6233-6238.DOI: 10.1088/0305-4470/32/35/301.
[17]WANG J F,ZHOU Z Z,ZHANG W,et al.Bond and site percolation in three dimensions[J].Physical Review E,2013,87(5): 052107.DOI: 10.1103/PhysRevE.87.052107.
[18]XU X,WANG J F,ZHOU Z Z,et al.Geometric structure of percolation clusters[J].Physical Review E,2014, 89(1): 012120.DOI: 10.1103/PhysRevE.89.012120.
[19]HUANG W,HOU P C,WANG J F,et al.Critical percolation clusters in seven dimensions and on a complete graph[J].Physical Review E,2018,97(2):022107.DOI: 10.1103/PhysRevE.97.022107.
[20]ZIFF R M.Scaling behavior of explosive percolation on the square lattice[J].Physical Review E,2010,82 (5): 051105.DOI: 10.1103/PhysRevE.82.051105.
[21]SWENDSEN R H,WANG J S.Nonuniversal critical dynamics in Monte Carlo simulations[J].Physical Review Letters,1987,58(2): 86-88.DOI: 10.1103/PhysRevLett.58.86.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘玉媛,曾上游. LTE同步技术频偏估计理论研究[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 32 -37 .
[2] 夏海英. 基于改进的SLIC区域合并的宫颈细胞图像分割[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 93 -100 .
[3] 孙康, 全宏俊. 多数者博弈模型演化分析[J]. 广西师范大学学报(自然科学版), 2016, 34(2): 1 -7 .
[4] 许伦辉, 刘景柠, 朱群强, 王晴, 谢岩, 索圣超. 自动引导车路径偏差的控制研究[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 1 -6 .
[5] 邝先验, 吴赟, 曹韦华, 吴银凤. 城市混合非机动车流的元胞自动机仿真模型[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 7 -14 .
[6] 肖瑞杰, 刘野, 修晓明, 孔令江. 耦合腔光机械系统中两个机械振子的态交换[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 15 -19 .
[7] 黄慧琼, 覃运梅. 考虑驾驶员性格特性的超车模型研究[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 20 -26 .
[8] 袁乐平, 孙瑞山. 飞行冲突调配概率安全评估方法研究[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 27 -31 .
[9] 杨盼盼, 祝龙记, 操孟杰. 基于STM32的TSC型无功补偿控制系统的研究[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 32 -37 .
[10] 章美月. 关于电子束聚焦系统模型的一些新结果[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 38 -44 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发