广西师范大学学报(自然科学版) ›› 2019, Vol. 37 ›› Issue (2): 27-37.doi: 10.16088/j.issn.1001-6600.2019.02.004

• • 上一篇    下一篇

基于晶格Boltzmann方法研究微液滴形变中接触角

邱文, 叶勇, 周思浩, 闻炳海*   

  1. 广西师范大学计算机科学与信息工程学院,广西桂林541004
  • 收稿日期:2018-08-31 出版日期:2019-04-25 发布日期:2019-04-28
  • 通讯作者: 闻炳海(1974—),男,河北青县人,广西师范大学教授,博士。E-mail:oceanwen@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(11362003);广西自然科学基金重点项目(2017GXNSFDA198038);广西研究生教育创新计划项目(XYCSZ2017068)

Contact Angle in Micro Droplet Deformation Based on Lattice Boltzmann Method

QIU Wen, YE Yong, ZHOU Sihao, WEN Binghai*   

  1. College of Computer Science and Information Technology, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2018-08-31 Online:2019-04-25 Published:2019-04-28

摘要: 接触角是常见的自然现象,是液体对固体表面浸润的结果,通过测量接触角可以判断固体表面亲疏液体的性质。从热力学自由能理论出发,采用基于化学势的多相流晶格Boltzmann方法研究表面上微小液滴形变中的接触角变化。通过设置不同的化学势来改变固体表面的亲疏液体性质,模拟计算中既有落在固体表面之上的液滴,也包括悬挂在固体表面下方的液滴。在忽略重力作用的情况下,模拟得到的接触角与球冠法的理论预期一致,并且液滴的接触角可以通过表面化学势线性调节。在考虑重力作用的情况下,虽然不同大小的液滴发生了明显的不同程度的形变,但是模拟计算所得的接触角保持不变,验证了微观接触角与重力无关的理论。

关键词: 晶格Boltzmann方法, 接触角, 表面润湿性, 液滴形变

Abstract: Contact angle is a common natural phenomenon,which is the result of liquid wetting on the solid surface. The surface wettability can be examined by measuring the contact angle. Starting from the free energy principle,the multi-phase Lattice Boltzmann method based on chemical potential is used to study the contact angle in the deformation of tiny droplets on the surface. The hydrophilic and hydrophobic properties of the solid surface can be changed by setting different chemical potential. The present simulations include both the sessile droplets standing on the surface and the pendent droplets adsorbing below the surface. Ignoring the effect of gravity,the simulating contact angle is consistent to the theoretical results of the spherical crown method,and the contact angle can be linearly adjusted by the surface chemical potential. Considering the effect of gravity,although the droplets of different sizes have some degrees of obvious deformations,the contact angle computed by the present method remains the same; this verifies the theoretical analysis that the microscopic contact angle is independent of the gravity.

Key words: Lattice Boltzmann method, contact angle, surface wettability, droplet deformation

中图分类号: 

  • O35
[1] 赵亚溥. 表面与界面物理力学[M]. 北京:科学出版社,2018.
[2] SUI Y,DING H,SPELT P D M. Numerical simulations of flows with moving contact lines[J]. Annu Rev Fluid Mech,2014,46(1):97-119.
[3] 黄兵方,闻炳海,邱文,等.基于晶格Boltzmann方法的接触角实时测量研究[J].广西师范大学学报(自然科学版),2018,36(1):34-43.
[4] 闻炳海,张超英,刘海燕,等.大血管中血液流动的LBM模拟[J].广西师范大学学报(自然科学版),2008,36(4):22-25.
[5] KWOKD Y,LIN R,MUI M,et al. Low-rate dynamic and static contact angles and the determination of solid surface tensions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,1996,116(1/2):63-77.
[6] BEZUGLYIB A,TARASOV O A,FEDORETS A A. Modified tilting-plate method for measuring contact angles[J]. Colloid J,2001,63(6):668-674.
[7] ZHANG W,HALLSTRÖM B. Membrane characterization using the contact angle technique I. Methodology of the captive bubble technique[J]. Desalination,1990,79(1):1-12.
[8] TRETINNIKOVO N,IKADA Y. Dynamic wetting and contact angle hysteresis of polymer surfaces studied with the modified Wilhelmy balance method[J]. Langmuir,1994,10(5):1606-1614.
[9] 郭照立,郑楚光. 格子Boltzmann方法的原理及应用[M]. 北京:科学出版社,2009.
[10] 何雅玲,王勇,李庆. 格子Boltzmann方法的理论及应用[M]. 北京:科学出版社,2009.
[11] BENZI R,BIFERALE L,SBRAGAGLIA M,et al. Mesoscopic modeling of a two-phase flow in the presence of boundaries: the contact angle[J]. Phys Rev E,2006,74(1):021509.
[12] BOMMER S,SCHOLL H,SEEMANN R,et al. Depinning of drops on inclined smooth and topographic surfaces: experimental and Lattice Boltzmann model study[J]. Langmuir,2014,30(37):11086-11095.
[13] HUANG H,THORNE D T,SCHAAP M G,et al. Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models[J]. Phys Rev E,2007,76(6):066701.
[14] JANSEN H P,BLIZNYUK O,KOOIJ E S,et al. Simulating anisotropic droplet shapes on chemically striped patterned surfaces[J]. Langmuir,2012,28(1):499-505.
[15] WANG C,WEN B,TU Y,et al. Friction reduction at a superhydrophilic surface: role of ordered water[J]. The Journal of Physical Chemistry C. 2015,119(21):11679-11684.
[16] CHEN S,DOOLEN G. Lattice Boltzmann method for fluid flows[J]. Annu Rev Fluid Mech,2012,30(1):329-364.
[17] LI Q,ZHOU P,YAN H J. Pinning-Depinning mechanism of the contact line during evaporation on chemically patterned surfaces: a Lattice Boltzmann study[J]. Langmuir,2016,32(37):9389.
[18] CHEN L,KANG Q,MU Y,et al. A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications[J]. International Journal of Heat and Mass Transfer,2014,76(6):210-236.
[19] DING H,SPELT P D M. Wetting condition in diffuse interface simulations of contact line motion[J]. Phys Rev E,2007,75(4):046708.
[20] LEE H G,KIM J. Accurate contact angle boundary conditions for the Cahn-Hilliard equations[J]. Comput Fluids,2011,44(1):178-186.
[21] DONG S. On imposing dynamic contact-angle boundary conditions for wall-bounded liquid-gas flows[J]. Comput Method Appl M,2012,247(5):179-200.
[22] WEN B,ZHANG C,FANG H. Hydrodynamic force evaluation by momentum exchange method in Lattice Boltzmann simulations[J]. Entropy,2015,17(12):8240-8266.
[23] WEN B,ZHANG C,TU Y,et al. Galilean invariant fluid-solid interfacial dynamics in lattice Boltzmann simulations[J]. J Comput Phys,2014,266(4):161-170.
[24] LAI H,XU A,ZHANG G,et al. Nonequilibrium thermohydrodynamic effects on the Rayleigh-Taylor instability in compressible flows[J]. Phys Rev E,2016,94(2):023106.
[25] WEN B,QIN Z,ZHANG C,et al. Thermodynamic-consistent lattice Boltzmann model for nonideal fluids[J]. Europhysics Letters,2015,112(4):44002.
[26] WEN B,ZHOU X,HE B,et al. Chemical-potential-based lattice Boltzmann method for nonideal fluids[J]. Phys Rev E,2017,95(6-1):063305.
[27] SWIFT M R,OSBORN W R,YEOMANS J M. Lattice Boltzmann simulation of nonideal fluids[J]. Physical Review Letters,1995,75(5):830-833.
[28] SHAN X. Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models[J]. Phys Rev E,2006,73(4):047701.
[29] LI Q,LUO K H,KANG Q J,et al. Contact angles in the pseudopotential lattice Boltzmann modeling of wetting[J]. Phys Rev E,2014,90(5):053301.
[30] WEN B,HUANG B,QIN Z,et al. Contact angle measurement in Lattice Boltzmann method[J]. Computers and Mathematics with Applications,2018,76(7):1686-1698.
[31] WANG Z,ZHAO Y P. Wetting and electrowetting on corrugated substrates[J]. Physics of Fluids,2017,29(6):067101.
[32] HUANG H,KRAFCZYK M,LU X. Forcing term in single-phase and Shan-Chen-type multiphase lattice Boltzmann models[J]. Phys Rev E,2011,84(2):046710.
[33] ROWLINSON J S,WIDOM B. Molecular theory of capillarity[M]. Dxford: Clarendon Press,1982: 647-649.
[34] LUBARDA V. Mechanics of a liquid drop deposited on a solid substrate[J]. Soft Matter,2012,8(40):10288-10297.
[35] PICKNETTR G,BEXON R. The evaporation of sessile or pendant drops in still air[J]. J Colloid Interface Sci,1977,61(2):336-350.
[36] XIE C,ZHANG J,BERTOLA V,et al. Droplet evaporation on a horizontal substrate under gravity field by mesoscopic modeling[J]. J Colloid Interface Sci,2016,463:317-323.
[1] 赵金想, 陈燕雁, 覃章荣, 张超英. 一种基于化学势LBM多相流模型的改进方法[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 87-95.
[2] 黄兵方,闻炳海,邱文,赵琬玲,陈燕雁. 基于晶格Boltzmann方法的接触角实时测量研究[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 34-43.
[3] 张超英, 黎槟华, 覃章荣. 基于CUDA的晶格Boltzmann并行算法的综合优化设计[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 142-148.
[4] 邱冰, 王立龙, 薛泽, 李华兵. 用晶格Boltzmann方法研究微血管脉动流中悬浮颗粒运动特征的转变[J]. 广西师范大学学报(自然科学版), 2011, 29(4): 7-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发