|
广西师范大学学报(自然科学版) ›› 2019, Vol. 37 ›› Issue (2): 27-37.doi: 10.16088/j.issn.1001-6600.2019.02.004
邱文, 叶勇, 周思浩, 闻炳海*
QIU Wen, YE Yong, ZHOU Sihao, WEN Binghai*
摘要: 接触角是常见的自然现象,是液体对固体表面浸润的结果,通过测量接触角可以判断固体表面亲疏液体的性质。从热力学自由能理论出发,采用基于化学势的多相流晶格Boltzmann方法研究表面上微小液滴形变中的接触角变化。通过设置不同的化学势来改变固体表面的亲疏液体性质,模拟计算中既有落在固体表面之上的液滴,也包括悬挂在固体表面下方的液滴。在忽略重力作用的情况下,模拟得到的接触角与球冠法的理论预期一致,并且液滴的接触角可以通过表面化学势线性调节。在考虑重力作用的情况下,虽然不同大小的液滴发生了明显的不同程度的形变,但是模拟计算所得的接触角保持不变,验证了微观接触角与重力无关的理论。
中图分类号:
[1] 赵亚溥. 表面与界面物理力学[M]. 北京:科学出版社,2018. [2] SUI Y,DING H,SPELT P D M. Numerical simulations of flows with moving contact lines[J]. Annu Rev Fluid Mech,2014,46(1):97-119. [3] 黄兵方,闻炳海,邱文,等.基于晶格Boltzmann方法的接触角实时测量研究[J].广西师范大学学报(自然科学版),2018,36(1):34-43. [4] 闻炳海,张超英,刘海燕,等.大血管中血液流动的LBM模拟[J].广西师范大学学报(自然科学版),2008,36(4):22-25. [5] KWOKD Y,LIN R,MUI M,et al. Low-rate dynamic and static contact angles and the determination of solid surface tensions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,1996,116(1/2):63-77. [6] BEZUGLYIB A,TARASOV O A,FEDORETS A A. Modified tilting-plate method for measuring contact angles[J]. Colloid J,2001,63(6):668-674. [7] ZHANG W,HALLSTRÖM B. Membrane characterization using the contact angle technique I. Methodology of the captive bubble technique[J]. Desalination,1990,79(1):1-12. [8] TRETINNIKOVO N,IKADA Y. Dynamic wetting and contact angle hysteresis of polymer surfaces studied with the modified Wilhelmy balance method[J]. Langmuir,1994,10(5):1606-1614. [9] 郭照立,郑楚光. 格子Boltzmann方法的原理及应用[M]. 北京:科学出版社,2009. [10] 何雅玲,王勇,李庆. 格子Boltzmann方法的理论及应用[M]. 北京:科学出版社,2009. [11] BENZI R,BIFERALE L,SBRAGAGLIA M,et al. Mesoscopic modeling of a two-phase flow in the presence of boundaries: the contact angle[J]. Phys Rev E,2006,74(1):021509. [12] BOMMER S,SCHOLL H,SEEMANN R,et al. Depinning of drops on inclined smooth and topographic surfaces: experimental and Lattice Boltzmann model study[J]. Langmuir,2014,30(37):11086-11095. [13] HUANG H,THORNE D T,SCHAAP M G,et al. Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models[J]. Phys Rev E,2007,76(6):066701. [14] JANSEN H P,BLIZNYUK O,KOOIJ E S,et al. Simulating anisotropic droplet shapes on chemically striped patterned surfaces[J]. Langmuir,2012,28(1):499-505. [15] WANG C,WEN B,TU Y,et al. Friction reduction at a superhydrophilic surface: role of ordered water[J]. The Journal of Physical Chemistry C. 2015,119(21):11679-11684. [16] CHEN S,DOOLEN G. Lattice Boltzmann method for fluid flows[J]. Annu Rev Fluid Mech,2012,30(1):329-364. [17] LI Q,ZHOU P,YAN H J. Pinning-Depinning mechanism of the contact line during evaporation on chemically patterned surfaces: a Lattice Boltzmann study[J]. Langmuir,2016,32(37):9389. [18] CHEN L,KANG Q,MU Y,et al. A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications[J]. International Journal of Heat and Mass Transfer,2014,76(6):210-236. [19] DING H,SPELT P D M. Wetting condition in diffuse interface simulations of contact line motion[J]. Phys Rev E,2007,75(4):046708. [20] LEE H G,KIM J. Accurate contact angle boundary conditions for the Cahn-Hilliard equations[J]. Comput Fluids,2011,44(1):178-186. [21] DONG S. On imposing dynamic contact-angle boundary conditions for wall-bounded liquid-gas flows[J]. Comput Method Appl M,2012,247(5):179-200. [22] WEN B,ZHANG C,FANG H. Hydrodynamic force evaluation by momentum exchange method in Lattice Boltzmann simulations[J]. Entropy,2015,17(12):8240-8266. [23] WEN B,ZHANG C,TU Y,et al. Galilean invariant fluid-solid interfacial dynamics in lattice Boltzmann simulations[J]. J Comput Phys,2014,266(4):161-170. [24] LAI H,XU A,ZHANG G,et al. Nonequilibrium thermohydrodynamic effects on the Rayleigh-Taylor instability in compressible flows[J]. Phys Rev E,2016,94(2):023106. [25] WEN B,QIN Z,ZHANG C,et al. Thermodynamic-consistent lattice Boltzmann model for nonideal fluids[J]. Europhysics Letters,2015,112(4):44002. [26] WEN B,ZHOU X,HE B,et al. Chemical-potential-based lattice Boltzmann method for nonideal fluids[J]. Phys Rev E,2017,95(6-1):063305. [27] SWIFT M R,OSBORN W R,YEOMANS J M. Lattice Boltzmann simulation of nonideal fluids[J]. Physical Review Letters,1995,75(5):830-833. [28] SHAN X. Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models[J]. Phys Rev E,2006,73(4):047701. [29] LI Q,LUO K H,KANG Q J,et al. Contact angles in the pseudopotential lattice Boltzmann modeling of wetting[J]. Phys Rev E,2014,90(5):053301. [30] WEN B,HUANG B,QIN Z,et al. Contact angle measurement in Lattice Boltzmann method[J]. Computers and Mathematics with Applications,2018,76(7):1686-1698. [31] WANG Z,ZHAO Y P. Wetting and electrowetting on corrugated substrates[J]. Physics of Fluids,2017,29(6):067101. [32] HUANG H,KRAFCZYK M,LU X. Forcing term in single-phase and Shan-Chen-type multiphase lattice Boltzmann models[J]. Phys Rev E,2011,84(2):046710. [33] ROWLINSON J S,WIDOM B. Molecular theory of capillarity[M]. Dxford: Clarendon Press,1982: 647-649. [34] LUBARDA V. Mechanics of a liquid drop deposited on a solid substrate[J]. Soft Matter,2012,8(40):10288-10297. [35] PICKNETTR G,BEXON R. The evaporation of sessile or pendant drops in still air[J]. J Colloid Interface Sci,1977,61(2):336-350. [36] XIE C,ZHANG J,BERTOLA V,et al. Droplet evaporation on a horizontal substrate under gravity field by mesoscopic modeling[J]. J Colloid Interface Sci,2016,463:317-323. |
[1] | 赵金想, 陈燕雁, 覃章荣, 张超英. 一种基于化学势LBM多相流模型的改进方法[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 87-95. |
[2] | 黄兵方,闻炳海,邱文,赵琬玲,陈燕雁. 基于晶格Boltzmann方法的接触角实时测量研究[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 34-43. |
[3] | 张超英, 黎槟华, 覃章荣. 基于CUDA的晶格Boltzmann并行算法的综合优化设计[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 142-148. |
[4] | 邱冰, 王立龙, 薛泽, 李华兵. 用晶格Boltzmann方法研究微血管脉动流中悬浮颗粒运动特征的转变[J]. 广西师范大学学报(自然科学版), 2011, 29(4): 7-11. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |