|
广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (6): 62-69.doi: 10.16088/j.issn.1001-6600.2023052001
林玩聪, 韩明杰, 靳婷*
LIN Wancong, HAN Mingjie, JIN Ting*
摘要: 本文旨在研究论点抽取技术,该技术的目的在于识别、抽取和分析文本信息中的论辩成分与结构。通过从若干句子中提取与辩题相关的论点,并判断该论点的立场为支持或反对,来完成对论辩事实文本的智能分析。以往的研究主要基于卷积神经网络和循环神经网络等深度学习模型,网络结构简单,无法从论辩中学习到更深层次的特征。为学习到论辩文本中更丰富的语义信息来对论辩立场进行分类,本文提出一种增强的RoBERTa模型EnhRoBERTa。该模型以预训练语言模型RoBERTa为基础,充分利用多层次的多头注意力机制,并且提取浅层和深层语义表示进行融合,从多个特征维度进一步理解论点和辩题之间的关系,完成对论点的立场分类。然而,考虑到论点对立场的分布不均衡问题,本文采用数据增强技术,增强对少样本的学习能力。在CCAC2022比赛数据集上的实验结果表明:本文模型相较于基线模型可以提取到更丰富的文本特征,取得61.4%的F1-score,比未使用预训练的基线模型TextCNN和BiLSTM提高约19个百分点,比RoBERTa提高3.8个百分点。
中图分类号: TP391.1
[1] THOMAS M, PANG B, LEE L. Get out the vote:determining support or opposition from Congressional floor-debate transcripts[C]// Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2006: 327-335. [2] BURFOOT C, BIRD S, BALDWIN T. Collective classification of congressional floor-debate transcripts[C]// Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: Association for Computational Linguistics, 2011: 1506-1515. [3] ANAND P, WALKER M, ABBOTT R, et al. Cats rule and dogsdrool!: classifying stance in online debate[C]// Proceedings of the 2nd Workshop on Computational Approaches to Subjectivity and Sentiment Analysis (WASSA 2.011). Stroudsburg, PA: Association for Computational Linguistics, 2011: 1-9. [4] 王儒, 王嘉梅, 王伟全, 等. 深度学习框架下微博文本情感细粒度研究[J]. 计算机系统应用, 2020, 29(5): 19-28. DOI: 10.15888/j.cnki.csa.007371. [5] 王安君, 黄凯凯, 陆黎明. 基于Bert-Condition-CNN的中文微博立场检测[J]. 计算机系统应用, 2019, 28(11): 45-53. DOI: 10.15888/j.cnki.csa.007152. [6] MOENS M F, BOIY E, PALAU R M, et al. Automatic detection of arguments in legal texts[C]// Proceedings of the 11th International Conference on Artificial Intelligence and Law. New York, NY: Association for Computing Machinery, 2007: 225-230. DOI: 10.1145/1276318.1276362. [7] FLOROU E, KONSTANTOPOULOS S, KOUKOURIKOS A, et al. Argument extraction for supporting public policy formulation[C]// Proceedings of the 7th Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities. Stroudsburg, PA: Association for Computational Linguistics, 2013: 49-54. [8] STAB C, GUREVYCH I. Parsing argumentation structures in persuasive essays[J]. Computational Linguistics, 2017, 43(3): 619-659. DOI: 10.1162/COLI_a_00295. [9] 杨进才, 汪燕燕, 曹元, 等. 关系词非充盈态复句的特征融合CNN关系识别方法[J]. 计算机系统应用, 2020, 29(6): 224-229. DOI: 10.15888/j.cnki.csa.007369. [10] 孙凯丽, 邓沌华, 李源, 等. 基于句内注意力机制多路CNN的汉语复句关系识别方法[J]. 中文信息学报, 2020, 34(6): 9-17, 26. DOI: 10.3969/j.issn.1003-0077.2020.06.003. [11] 黄丽明, 陈维政, 闫宏飞, 等. 基于循环神经网络和深度学习的股票预测方法[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 13-22. DOI: 10.16088/j.issn.1001-6600.2019.01.002. [12] 邵良杉, 周玉. 基于语义规则与RNN模型的在线评论情感分类研究[J]. 中文信息学报, 2019, 33(6): 124-131. DOI: 10.3969/j.issn.1003-0077.2019.06.018. [13] 周圣凯, 富丽贞, 宋文爱. 基于深度学习的短文本语义相似度计算模型[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 49-56. DOI: 10.16088/j.issn.1001-6600.2021071001. [14] ZARRELLA G, MARSH A.MITRE at SemEval-2016 task 6: transfer learning for stance detection[C]// Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016). Stroudsburg, PA: Association for Computational Linguistics, 2016: 458-463. DOI: 10.18653/v1/S16-1074. [15] MOHTARAMI M, BALY R, GLASS J, et al. Automatic stance detection using end-to-end memory networks[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2018: 767-776. DOI: 10.18653/v1/N18-1070. [16] LI M L, GAO Y, WEN H, et al. Joint RNN model for argument component boundary detection[C]// 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Piscataway, NJ: IEEE, 2017: 57-62. DOI: 10.1109/SMC.2017.8122578. [17] LAHA A, RAYKAR V. An empirical evaluation of various deep learning architectures for bi-sequence classification tasks[C]// Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers. Osaka: The COLING 2016 Organizing Committee, 2016: 2762-2773. [18] 郝雅茹, 董力, 许可, 等. 预训练语言模型的可解释性研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 59-71. DOI: 10.16088/j.issn.1001-6600.2022030802. [19] LEWIS M, LIU Y H, GOYAL N, et al. BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2020: 7871-7880. DOI: 10.18653/v1/2020.acl-main.703. [20] SUN Y, WANG S H, LI Y K, et al. ERNIE: enhanced representation through knowledge integration[EB/OL].(2019-04-19)[2023-05-20]. http://arxiv.org/abs/1904.09223. DOI: 10.48550/arXiv.1904.09223. [21] DEVLIN J, CHANG M W, LEE K, et al.BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg, PA: Association for Computational Linguistics, 2019: 4171-4186. DOI: 10.18653/v1/N19-1423. [22] 胡婕, 何巍, 曾张帆. 基于RoBERTa的全局图神经网络文档级中文金融事件抽取[J]. 中文信息学报, 2023, 37(2): 107-118. DOI: 10.3969/j.issn.1003-0077.2023.02.011. [23] 马天宇, 覃俊, 刘晶, 等. 基于 BERT 的意图分类与槽填充联合方法[J]. 中文信息学报, 2022, 36(8): 127-134. DOI: 10.3969/j.issn.1003-0077.2022.08.016. [24] JAWAHAR G, SAGOT B, SEDDAH D. What does BERT learn about the structure of language?[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2019: 3651-3657. DOI: 10.18653/v1/P19-1356. [25] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327. DOI: 10.1109/TPAMI.2018.2858826. [26] 孙毅, 裘杭萍, 郑雨, 等. 自然语言预训练模型知识增强方法综述[J]. 中文信息学报, 2021, 35(7): 10-29. DOI: 10.3969/j.issn.1003-0077.2021.07.002. [27] LIU Y H, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized BERT pretraining approach[EB/OL].(2019-07-26)[2023-05-20]. http://arxiv.org/abs/1907.11692. DOI: 10.48550/arXiv.1907.11692. [28] KIM Y.Convolutional neural networks for sentence classification[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, PA: Association for Computational Linguistics, 2014: 1746-1751. DOI: 10.3115/v1/D14-1181. [29] ZHANG S, ZHENG D Q, HU X C, et al. Bidirectional long short-term memory networks for relation classification[C]// Proceedings of the 29th Pacific Asia Conference on Language, Information and Computation. Stroudsburg, PA: Association for Computational Linguistics, 2015: 73-78. |
[1] | 孔亚钰, 卢玉洁, 孙中天, 肖敬先, 侯昊辰, 陈廷伟. 面向强化当前兴趣的图神经网络推荐算法研究[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 151-160. |
[2] | 吴军, 欧阳艾嘉, 张琳. 基于多头注意力机制的磷酸化位点预测模型[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 161-171. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |