广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (3): 86-98.doi: 10.16088/j.issn.1001-6600.2023062102

• 研究论文 • 上一篇    下一篇

基于元胞自动机的Brugada综合征患者心电信号研究

李成乾, 石晨, 邓敏艺*   

  1. 广西师范大学 物理科学与技术学院, 广西 桂林 541004
  • 收稿日期:2023-06-21 修回日期:2023-10-26 发布日期:2024-05-31
  • 通讯作者: 邓敏艺(1973—), 女, 广西平南人, 广西师范大学教授。E-mail: dengminyi@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(12047567)

Study for the Electrocardiographic Signal of Brugada Syndrome Patients Using Cellular Automaton

LI Chengqian, SHI Chen, DENG Minyi*   

  1. College of Physical Science and Technology, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2023-06-21 Revised:2023-10-26 Published:2024-05-31

摘要: 针对Brugada综合征(Brugada syndrome, BrS)患者的症状发展与其异常CV(conduction velocity, CV)恢复和异常APD(action potential duration, APD)恢复之间的联系仍未明确问题,本文采用元胞自动机模型对其进行研究。首先根据BrS患者心电信号的特点对元胞自动机模型进行量纲化处理,并在模型中考虑CV恢复和APD恢复;然后使用该模型数值模拟不同CV恢复及APD恢复下与心动过速对应的心电信号螺旋波态的演化行为。结果表明:只存在CV恢复时,心动过速只会维持,不会恶化;在CV恢复和无记忆APD恢复共同影响下,心动过速可能消失,也可能转化为心室颤动,其中转化为心室颤动的概率为54%,明显高于临床数据;在CV恢复和带记忆APD恢复共同影响下,心动过速可能消失、维持或转化为心室颤动,其中转化为心室颤动的概率约为35%,与临床数据一致。跟踪观察波头附近的心电信号传导情况,发现BrS患者的症状发展与CV恢复或APD恢复导致的电信号传导阻滞有关,传导阻滞的程度越严重,BrS患者就越容易由心动过速发展为心室颤动。记忆性APD恢复因其记忆效应能降低APD的振荡幅度,所以能降低心室颤动的发生率。

关键词: Brugada综合征, 心电信号, 元胞自动机, 心动过速, 心室颤动

Abstract: The relationship between the symptoms of Brugada Syndrome (BrS) patients and their abnormal conduction velocity (CV) restitution and abnormal action potential duration (APD) restitution are investigated using cellular automaton in this paper. Firstly, based on the characteristics of the electrocardiogram signals of BrS patients, the cellular automaton model is dimensionalized, and CV recovery and APD recovery are considered in the model. The behavior of the spiral wave of electrocardiographic signal related to the tachycardia is studied by using this model. The results indicate that only when CV recovery occurs, tachycardia will be maintained and will not worsen; Under the combined influence of CV recovery and memoryless APD recovery, tachycardia may disappear or transform into ventricular fibrillation, with a probability of 54%, significantly higher than clinical data; Under the combined influence of CV recovery and memory based APD recovery, tachycardia may disappear, maintain, or transform into ventricular fibrillation, with a conversion rate of 35% to ventricular fibrillation, which is consistent with clinical data. Tracking and observing the conduction of electrocardiogram signals near the wave head, it is found that the development of symptoms in BrS patients is related to the electrical signal conduction block caused by CV or APD recovery. The more severe the conduction block, the more likely BrS patients are to develop from tachycardia to ventricular fibrillation. Memory based APD recovery can reduce the incidence of ventricular fibrillation due to its memory effect, which can reduce the oscillation amplitude of APD.

Key words: Brugada syndrome, electrocardiographic signal, cellular automaton, tachycardia, ventricular fibrillation

中图分类号:  TN911.7;R541.7

[1] BRUGADA P, BRUGADA J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report[J]. Journal of the American College of Cardiology, 1992, 20(6): 1391-1396. DOI: 10.1016/0735-1097(92)90253-j.
[2] ANTZELEVITCH C, BRUGADA P, BORGGREFE M, et al. Brugada syndrome: report of the second consensus conference[J]. Heart Rhythm, 2005, 2(4): 429-440. DOI: 10.1016/j.hrthm.2005.01.005.
[3] KOCABAS U, HASDEMIR C, KAYA E, et al. Brugada syndrome, Brugada phenocopy or none?[J]. Annals of Noninvasive Electrocardiology, 2017, 22(6): e12470. DOI: 10.1111/anec.12470.
[4] PROBST V, VELTMANN C, ECKARDT L, et al. Long-term prognosis of patients diagnosed with Brugada syndrome: results from the FINGER Brugada Syndrome Registry[J]. Circulation, 2010, 121(5): 635-643. DOI: 10.1161/CIRCULATIONAHA.109.887026.
[5] SATISH H, REDDY M R. Reentry in cardiac ventricular epicardial tissue due to SCN5A L812Q gene mutation: a computational study[J]. Biomedical Physics & Engineering Express, 2022, 8(3): 10. DOI: 10.1088/2057-1976/ac605c.
[6] LANDAW J, YUAN X P, CHEN P S, et al. The transient outward potassium current plays a key role in spiral wave breakup in ventricular tissue[J]. American Journal of Physiology. Heart and Circulatory Physiology, 2021, 320(2): H826-H837. DOI: 10.1152/ajpheart.00608.2020.
[7] ASHINO S, WATANABE I, KOFUNE M, et al. Effects of quinidine on the action potential duration restitution property in the right ventricular outflow tract in patients with Brugada syndrome[J]. Circulation Journal, 2011, 75(9): 2080-2086. DOI: 10.1253/circj.cj-11-0227.
[8] HALPERIN L, MELLOR G, TALAJIC M, et al. Quinidine effective for the management of ventricular and atrial arrhythmias associated with Brugada syndrome[J]. HeartRhythm Case Reports, 2018, 4(7): 270-272. DOI: 10.1016/j.hrcr.2018.01.008.
[9] BRUGADA R, BRUGADA J, ANTZELEVITCH C, et al. Sodium channel blockers identify risk for sudden death in patients with ST-segment elevation and right bundle branch block but structurally normal hearts[J]. Circulation, 2000, 101(5): 510-515. DOI: 10.1161/01.cir.101.5.510.
[10] SCHEIRLYNCK E, CHIVULESCU M, LIE Ø H, et al. Worse prognosis in Brugada syndrome patients with arrhythmogenic cardiomyopathy features[J]. JACC: Clinical Electrophysiology, 2020, 6(11): 1353-1363. DOI: 10.1016/j.jacep.2020.05.026.
[11] ANTZELEVITCH C, YAN G X. Cellular and Ionic mechanisms responsible for the Brugada syndrome[J]. Journal of Electrocardiology, 2000, 33(Supplement 1): 33-39. DOI: 10.1054/jelc.2000.20321.
[12] ZHU J F, SHEN Y, XIONG H B, et al. Identification of a novel missense SCN5A mutation in a Chinese Han family with Brugada syndrome[J]. Biochemical and Biophysical Research Communications, 2023, 649: 55-61. DOI: 10.1016/j.bbrc.2023.01.026.
[13] ANTZELEVITCH C. Heterogeneity and cardiac arrhythmias: an overview[J]. Heart Rhythm, 2007, 4(7): 964-972. DOI: 10.1016/j.hrthm.2007.03.036.
[14] NARAYAN S M, KIM J, TATE C, et al. Steep restitution of ventricular action potential duration and conduction slowing in human Brugada syndrome[J]. Heart Rhythm, 2007, 4(8): 1087-1089. DOI: 10.1016/j.hrthm.2007.04.018.
[15] FINLAY M, BHAR-AMATO J, NG K E, et al. Autonomic modulation of the electrical substrate in mice haploinsufficient for cardiac sodium channels: a model of the Brugada syndrome[J]. American Journal of Physiology. Cell Physiology, 2019, 317(3): C576-C583. DOI: 10.1152/ajpcell.00028.2019.
[16] POSTEMA P G, VAN DESSEL P F H M, DE BAKKER J M T, et al. Slow and discontinuous conduction conspire in Brugada syndrome: a right ventricular mapping and stimulation study[J]. Circulation: Arrhythmia and Electrophysiology, 2008, 1(5): 379-386. DOI: 10.1161/CIRCEP.108.790543.
[17] CORONEL R, CASINI S, KOOPMANN T T, et al. Right ventricular fibrosis and conduction delay in a patient with clinical signs of Brugada syndrome: a combined electrophysiological, genetic, histopathologic, and computational study[J]. Circulation, 2005, 112(18): 2769-2777. DOI: 10.1161/CIRCULATIONAHA.105.532614.
[18] WOLFRAM S. Statistical mechanics of cellular automata[J]. Reviews of Modern Physics, 1983, 55(3): 601-644. DOI: 10.1103/RevModPhys.55.601.
[19] 邝先验,陈自如.考虑礼让行人的交叉口机非混合交通流模型[J].广西师范大学学报(自然科学版),2019,37(4):1-15. DOI: 10.16088/j.issn.1001-6600.2019.04.001.
[20] WANG F H, LI L Y, LIU Y T, et al. One-dimensional cellular automaton traffic flow model based on defensive driving strategy[J]. International Journal of Crashworthiness, 2022, 27(1): 193-197. DOI: 10.1080/13588265.2020.1785091.
[21] KUANG X Y, CHEN Z R. Trajectory research of Cellular Automaton Model based on real driving behaviour[J]. Physica A: Statistical Mechanics and Its Applications, 2022, 602: 127610. DOI: 10.1016/j.physa.2022.127610.
[22] LI Y X, YANG XX, MENG M, et al. Pedestrian evacuation simulation in multi-exit case: an emotion and group dual-driven method[J]. Chinese Physics B, 2023, 32(4): 048901. DOI: 10.1088/1674-1056/ac9609.
[23] 张琦,渠静.基于前摄效应的不耐烦行为建模与双向行人流动态[J].物理学报,2022,71(7):070502. DOI: 10.7498/aps.71.20211537.
[24] ZHANG Y X, LI W, RUI Y, et al. A modified cellular automaton model of pedestrian evacuation in a tunnel fire[J]. Tunnelling and Underground Space Technology, 2022, 130: 104673. DOI: 10.1016/j.tust.2022.104673.
[25] WANG G N, CHEN T, CHEN J W, et al. Simulation of crowd dynamics in pedestrian evacuation concerning panic contagion: a cellular automaton approach[J]. Chinese Physics B, 2022, 31(6): 060402. DOI: 10.1088/1674-1056/ac4a66.
[26] NAGARAJU K, SUDEEP K S, KURHEKAR M P. A cellular automaton model to find the risk of developing autism through gut-mediated effects[J]. Computers in Biology and Medicine, 2019, 110: 207-217. DOI: 10.1016/j.compbiomed.2019.05.015.
[27] VENUGOPAL N, MARI K, MANIKANDAN G, et al. Phase quantized polar transformative with cellular automaton for early glaucoma detection[J]. Ain Shams Engineering Journal, 2021, 12(4): 4145-4155. DOI: 10.1016/j.asej.2021.04.018.
[28] VALENTIM C A, RABI J A, DAVID S A. Cellular-automaton model for tumor growth dynamics: Virtualization of different scenarios[J]. Computers in Biology and Medicine, 2023, 153: 106481. DOI: 10.1016/j.compbiomed.2022.106481.
[29] PARK A, RAWLE R J. Kinetic and cellular automaton models of west Nile virus hemifusion[J]. Biophysical Journa, 2020, 118(3): 553A. DOI: 10.1016/j.bpj.2019.11.3024.
[30] 师伟展,邝华,白克钊,等.固执者对舆论传播动力学的影响研究[J].广西师范大学学报(自然科学版),2014,32(3):22-26. DOI: 10.3969/j.issn.1001-6600.2014.03.004.
[31] CHEN H Z, SONG Y H, LIU D. Research on cellular automata network public opinion transmission model based on combustion theory[J]. Journal of Physics: Conference Series, 2020, 1544(1): 012131. DOI: 10.1088/1742-6596/1544/1/012131.
[32] YU Y F, LI Y, LIN F, et al. A multi-grid Cellular Automaton model for simulating dendrite growth and its application in additive manufacturing[J]. Additive Manufacturing, 2021, 47: 102284. DOI: 10.1016/j.addma.2021.102284.
[33] OGAWA J, NATSUME Y. Three-dimensional large-scale grain growth simulation using a cellular automaton model[J]. Computational Materials Science, 2021, 199: 110729. DOI: 10.1016/j.commatsci.2021.110729.
[34] 张学良,谭惠丽,白克钊,等.一种体现心肌细胞传导记忆的元胞自动机模型[J].广西师范大学学报(自然科学版),2017,35(4):1-9. DOI: 10.16088/j.issn.1001-6600.2017.04.001.
[35] 关富荣,李成乾,邓敏艺.动作电位动态变化对螺旋波演化行为的影响[J].物理学报,2022,71(11):110502. DOI: 10.7498/aps.71.20220021.
[36] MOE G K, RHEINBOLDT W C, ABILDSKOV J A. A computer model of atrial fibrillation[J]. American Heart Journal, 1964, 67(2): 200-220. DOI: 10.1016/0002-8703(64)90371-0.
[37] 余承高,白融,陈栋梁,等.心脏电生理学基础与临床[M].武汉:华中科技大学出版社,2008:17.
[38] DE LANGE E, KUCERA J P. Alternans resonance and propagation block during supernormal conduction in cardiac tissue with decreased [K+]o[J]. Biophysical Journal, 2010, 98(7): 1129-1138. DOI: 10.1016/j.bpj.2009.12.4280.
[39] BIASCI V, SACCONI L, CYTRYNBAUM E N, et al. Universal mechanisms for self-termination of rapid cardiac rhythm[J]. Chaos, 2020, 30(12): 121107. DOI: 10.1063/5.0033813.
[40] WEBER F M, LUIK A, SCHILLING C, et al. Conduction velocity restitution of the human atrium--an efficient measurement protocol for clinical electrophysiological studies[J]. IEEE Transactions on Bio-medical Engineering, 2011, 58(9): 2648-2655. DOI: 10.1109/TBME.2011.2160453.
[41] SHRIER A, DUBARSKY H, ROSENGARTEN M, et al. Prediction of complex atrioventricular conduction rhythms in humans with use of the atrioventricular nodal recovery curve[J]. Circulation, 1987, 76(6): 1196-1205. DOI: 10.1161/01.cir.76.6.1196.
[42] SHATTOCK M J, PARK K C, YANG H Y, et al. Restitution slope is principally determined by steady-state action potential duration[J]. Cardiovascular Research, 2017, 113(7): 817-828. DOI: 10.1093/cvr/cvx063.
[43] LIN Y T, CHANG E T Y, EATOCK J, et al. Mechanisms of stochastic onset and termination of atrial fibrillation studied with a cellular automaton model[J]. Journal of the Royal Society Interface, 2017, 14(128): 20160968. DOI: 10.1098/rsif.2016.0968.
[44] ISSA Z F,MILLER J M,ZIPES D P.临床心律失常与电生理学:《Braunwald心脏病学》姊妹卷[M].吴永全,张树龙,译.北京:北京大学医学出版社,2014:4,490.
[45] CALLAWAY C W, MENEGAZZI J J. Waveform analysis of ventricular fibrillation to predict defibrillation[J]. Current Opinion in Critical Care, 2005, 11(3): 192-199. DOI: 10.1097/01.ccx.0000161725.71211.42.
[46] INDIK J H, DONNERSTEIN R L, BERG R A, et al. Ventricular fibrillation frequency characteristics are altered in acute myocardial infarction[J]. Critical Care Medicine, 2007, 35(4): 1133-1138. DOI: 10.1097/01.CCM.0000259540.52062.99.
[47] AVULA U M R, ABRAMS J, KATCHMAN A, et al. Heterogeneity of the action potential duration is required for sustained atrial fibrillation[J]. JCI Insight, 2019, 5(11): 128765. DOI: 10.1172/jci.insight.128765.
[48] SORGENTE A, JOSEPHSON M E. Don’t forget the memory: contribution of the T wave vector in localizing the site of origin of a monomorphic idiopathic ventricular tachycardia[J]. Journal of Cardiology Cases, 2012, 5(1): e28-e31. DOI: 10.1016/j.jccase.2011.09.003.
[49] JING L Y, CHOURASIA S, PATWARDHAN A. Heterogeneous memory in restitution of action potential duration in pig ventricles[J]. Journal of Electrocardiology, 2010, 43(5): 425-432. DOI: 10.1016/j.jelectrocard.2010.02.006.
[50] IDEKER R E, ROGERS J M, GRAY R A. Steepness of the restitution curve: a slippery slope?[J]. Journal of Cardiovascular Electrophysiology, 2002, 13(11): 1173-1175. DOI: 10.1046/j.1540-8167.2002.01173.x.
[1] 邝先验, 陈自如. 考虑礼让行人的交叉口机非混合交通流模型[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 1-15.
[2] 张学良,谭惠丽,白克钊,唐国宁,邓敏艺. 一种体现心肌细胞传导记忆的元胞自动机模型[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 1-9.
[3] 黄雯, 谭惠丽. 心脏记忆对螺旋波动力学的影响[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 1-8.
[4] 戴静娱, 张学良, 邓敏艺, 谭惠丽. 位置扰动对激发介质中螺旋波动力学行为的影响[J]. 广西师范大学学报(自然科学版), 2016, 34(2): 8-14.
[5] 蔡美静, 邝华, 白克钊, 陈若航. 电影厅内部布局及出口位置对疏散效率的影响[J]. 广西师范大学学报(自然科学版), 2015, 33(3): 1-6.
[6] 邝先验, 吴赟, 曹韦华, 吴银凤. 城市混合非机动车流的元胞自动机仿真模型[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 7-14.
[7] 师伟展, 邝华, 白克钊, 孔令江. 固执者对舆论传播动力学的影响研究[J]. 广西师范大学学报(自然科学版), 2014, 32(3): 22-26.
[8] 许钢, 刘海燕, 张超英, 梁振燕. 基于元胞自动机的建构主义理论应用模拟[J]. 广西师范大学学报(自然科学版), 2013, 31(4): 7-12.
[9] 邓敏艺, 谭惠丽. 一个双变量元胞自动机模型的定性研究[J]. 广西师范大学学报(自然科学版), 2013, 31(2): 1-6.
[10] 余艳, 白克钊, 孔令江. 行人与机动车相互干扰的元胞自动机模拟研究[J]. 广西师范大学学报(自然科学版), 2013, 31(1): 6-10.
[11] 翟莹, 易忠, 谢正卫, 邓培民, 李王月. 一类特殊规则的二维混合元胞自动机的GOE问题[J]. 广西师范大学学报(自然科学版), 2013, 31(1): 37-43.
[12] 覃松, 邓敏艺, 孔令江. 融资融券影响的元胞自动机股票市场模拟研究[J]. 广西师范大学学报(自然科学版), 2011, 29(4): 12-15.
[13] 潘江洪, 白克钊, 邝华, 孔令江. 一种考虑能见度影响的元胞自动机交通流模型[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 1-4.
[14] 陈永淇, 白克钊, 邝华, 孔令江, 刘慕仁. 教室内布局对人员疏散影响的研究[J]. 广西师范大学学报(自然科学版), 2011, 29(1): 1-4.
[15] 刘海燕, 张超英, 梁振燕, 杨上元. 基于元胞自动机的学习者行为模拟[J]. 广西师范大学学报(自然科学版), 2010, 28(4): 1-4.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发