|
广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (3): 34-46.doi: 10.16088/j.issn.1001-6600.2023100602
翟言豪1,2,3, 王燕舞1,4*, 李强2,3, 李景坤1
ZHAI Yanhao1,2,3, WANG Yanwu1,4*, LI Qiang2,3, LI Jingkun1
摘要: 采用文献计量学方法厘清国内外三维荧光光谱技术对内陆水体中溶解性有机质(DOM)的研究现状、热点和发展趋势。利用CiteSpace知识图谱分析工具,以CNKI和WoS核心合集为数据源,从年发文量、发文作者、发文国家、关键词聚类以及突显等方面进行可视化分析,并对三维荧光光谱技术研究内陆水体中的DOM及其数据分析方法与解析技术进行综述。结果表明该领域年发文量呈上升趋势且以外文文献量增长较快为主要特征,中国是发文量最多的国家,国际化交流合作程度高且已形成较为稳定的研究团体,研究潜力充足。国内外利用三维荧光光谱技术对内陆水体中DOM的研究主要集中在易受人类活动影响或富营养化严重的水域,包括富营养化水体与沉积物中溶解性有机质,有色溶解性有机质和消毒副产物的研究,以及涉及溶解性有机质与重金属相互作用、全球气候变化响应、生物利用性等方面。除了采用常规的数据分析方法外,综合运用三维荧光光谱与吸收光谱、质谱等技术相结合,从分子水平解析内陆水体中DOM的组成和来源特征是该领域未来的重要研究热点与趋势。
中图分类号: X143;P342
[1] TRANVIK L J, DOWNING J A, COTNER J B, et al. Lakes and reservoirs as regulators of carbon cycling and climate[J]. Limnology and Oceanography, 2009, 54(6 part 2): 2298-2314. DOI: 10.4319/lo.2009.54.6_part_2.2298. [2] HEINO J, ALAHUHTA J, BINI L M, et al. Lakes in the era of global change: moving beyond single-lake thinking in maintaining biodiversity and ecosystem services[J]. Biological Reviews, 2021, 96(1): 89-106. DOI: 10.1111/brv.12647. [3] HAYASE K, TSUBOTA H. Sedimentary humic acid and fulvic acid as fluorescent organic materials[J]. Geochimica et Cosmochimica Acta, 1985, 49(1): 159-163. DOI: 10.1016/0016-7037(85)90200-5. [4] REN W X, WU X D, GE X G, et al. Characteristics of dissolved organic matter in lakes with different eutrophic levels in southeastern Hubei Province, China[J]. Journal of Oceanology and Limnology, 2021, 39(4): 1256-1276. DOI: 10.1007/s00343-020-0102-x. [5] PATIDAR S K, CHOKSHI K, GEORGE B, et al. Dominance of cyanobacterial and cryptophytic assemblage correlated to CDOM at heavy metal contamination sites of Gujarat, India[J]. Environmental Monitoring and Assessment, 2015, 187(1): 4118. DOI: 10.1007/s10661-014-4118-6. [6] 陈诗雨,李燕,李爱民.溶解性有机物研究中三维荧光光谱分析的应用[J].环境科学与技术,2015,38(5):64-68,73. DOI: 10.3969/j.issn.1003-6504.2015.05.014. [7] SANCHEZ N P, SKERIOTIS A T, MILLER C M. A PARAFAC-based long-term assessment of DOM in a multi-coagulant drinking water treatment scheme[J]. Environmental Science & Technology, 2014, 48(3): 1582-1591. DOI: 10.1021/es4049384. [8] 赵珂艺,张宁宁,薛洁怡,等.重金属超富集植物研究CiteSpace可视化分析[J].广西师范大学学报(自然科学版),2023,41(3):191-209. DOI: 10.16088/j.issn.1001-6600.2022030701. [9] 张小丽,陈泽柠,武正军.蜥蜴与气候变化的研究热点演变分析:基于Web of Science数据库[J].广西师范大学学报(自然科学版),2022,40(5):332-341. DOI: 10.16088/j.issn.1001-6600.2021100911. [10] 董淑龙,马姜明,辛文杰.景观视觉评价研究进展与趋势:基于CiteSpace的知识图谱分析[J].广西师范大学学报(自然科学版),2023,41(5):1-13. DOI: 10.16088/j.issn.1001-6600.2022062102. [11] 陈悦,陈超美,刘则渊,等.CiteSpace知识图谱的方法论功能[J].科学学研究,2015,33(2):242-253. DOI: 10.3969/j.issn.1003-2053.2015.02.009. [12] 崔兵,高红杰,郑昭佩,等.基于三维荧光和二维相关光谱的城市河流溶解性有机质组成及其空间分异特征[J].生态与农村环境学报,2021,37(3):369-377. DOI: 10.19741/j.issn.1673-4831.2020.0568. [13] 陈旭东,高良敏.不同面源强度影响下城市河流溶解性有机质光谱特征变化[J].环境科学,2022,43(6):3149-3159. DOI: 10.13227/j.hjkx.202106001. [14] PARR T B, CRONAN C S, OHNO T, et al. Urbanization changes the composition and bioavailability of dissolved organic matter in headwater streams[J]. Limnology and Oceanography, 2015, 60(3): 885-900. DOI: 10.1002/lno.10060. [15] 陈伟江,廖月清,王苗苗,等.水体富营养化修复技术研究进展[J].应用化工,2022,51(2):531-537. DOI: 10.3969/j.issn.1671-3206.2022.02.044. [16] 朱喜.太湖蓝藻大爆发的警示和启发[J].上海企业,2007(7):7-9, 13. DOI: 10.3969/j.issn.1004-7808.2007.07.004. [17] 陈丽丽,肖启涛,俞晓琴,等.东部地区大型湖库有色可溶性有机物来源组成及潜在驱动因素[J].环境科学,2022,43(4):1930-1940. DOI: 10.13227/j.hjkx.202108267. [18] 程庆霖,郑丙辉,王圣瑞,等.滇池水体有色溶解性有机质(CDOM)三维荧光光谱特征[J].光谱学与光谱分析,2014,34(3):698-703. DOI: 10.3964/j.issn.1000-0593(2014)03-0698-06. [19] 宋柯峥,蔡启佳,洪培,等.武汉南湖可溶解性有机物的来源与组成分析[J].环境科学与技术,2021,44(3):120-129. DOI: 10.19672/j.cnki.1003-6504.2021.03.016. [20] 程云轩,赵可,张越,等.松花湖沉积物溶解性有机质荧光光谱特性[J].环境科学,2022,43(4):1941-1949. DOI: 10.13227/j.hjkx.202108136. [21] 赵海超,李艳平,王圣瑞,等.洱海上覆水DOM荧光特征及对富营养化的指示意义[J].光谱学与光谱分析,2019,39(12):3888-3896. DOI: 10.3964/j.issn.1000-0593(2019)12-3888-09. [22] ZHANG Y L, VAN DIJK M A, LIU M L, et al. The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes: field and experimental evidence[J]. Water Research, 2009, 43(18): 4685-4697. DOI: 10.1016/j.watres.2009.07.024. [23] 冯伟莹,朱元荣,吴丰昌,等.太湖水体溶解性有机质荧光特征及其来源解析[J].环境科学学报,2016,36(2):475-482. DOI: 10.13671/j.hjkxxb.2015.0652. [24] JIANG T, BRAVO A G, SKYLLBERG U, et al. Influence of dissolved organic matter (DOM) characteristics on dissolved mercury (Hg) species composition in sediment porewater of lakes from southwest China[J]. Water Research, 2018, 146: 146-158. DOI: 10.1016/j.watres.2018.08.054. [25] LU W, CHEN N, FENG C P, et al. Treatment of polluted river sediment by electrochemical oxidation: changes of hydrophilicity and acute cytotoxicity of dissolved organic matter[J]. Chemosphere, 2020, 243: 125283. DOI: 10.1016/j.chemosphere.2019.125283. [26] 朱金杰,邹楠,钟寰,等.富营养化巢湖沉积物溶解性有机质光谱时空分布特征及其环境意义[J].环境科学学报,2020,40(7):2528-2538. DOI: 10.13671/j.hjkxxb.2020.0051. [27] LUO Y Y, ZHANG Y Y, LANG M F, et al. Identification of sources, characteristics and photochemical transformations of dissolved organic matter with EEM-PARAFAC in the Wei River of China[J]. Frontiers of Environmental Science & Engineering, 2021, 15(5): 96. DOI: 10.1007/s11783-020-1340-z. [28] WANG S R, JIAO L X, YANG S W, et al. Organic matter compositions and DOM release from the sediments of the shallow lakes in the middle and lower reaches of Yangtze River region, China[J]. Applied Geochemistry, 2011, 26(8): 1458-1463. DOI: 10.1016/j.apgeochem.2011.05.019. [29] LE MOAL M, GASCUEL-ODOUX C, MÉNESGUEN A, et al. Eutrophication: a new wine in an old bottle?[J]. The Science of the Total Environment, 2019, 651(Pt 1): 1-11. DOI: 10.1016/j.scitotenv.2018.09.139. [30] 孙文,王理明,刘吉宝,等.北运河沙河水库沉积物营养盐分布特征及其溯源分析[J].环境科学学报,2019,39(5):1581-1589. DOI: 10.13671/j.hjkxxb.2019.0067. [31] 冯可心,李永峰,姜霞,等.丹江口水库表层沉积物有色可溶性有机物空间分布特征及其来源分析[J].环境化学,2016,35(2):373-382. DOI: 10.7524/j.issn.0254-6108.2016.02.2015090102. [32] 王亚蕊,陈向超,陈丙法,等.藻屑堆积对沉积物-水界面污染物的释放效应[J].环境科学学报,2018,38(1):142-153. DOI: 10.13671/j.hjkxxb.2017.0279. [33] LI Y P, WANG S R, ZHANG L, et al. Composition and spectroscopic characteristics of dissolved organic matter extracted from the sediment of Erhai Lake in China[J]. Journal of Soils and Sediments, 2014, 14(9): 1599-1611. DOI: 10.1007/s11368-014-0916-2. [34] ZHANG Y L, YIN Y, FENG L Q, et al. Characterizing chromophoric dissolved organic matter in Lake Tianmuhu and its catchment basin using excitation-emission matrix fluorescence and parallel factor analysis[J]. Water Research, 2011, 45(16): 5110-5122. DOI: 10.1016/j.watres.2011.07.014. [35] WILLIAMS C J, YAMASHITA Y, WILSON H F, et al. Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems[J]. Limnology and Oceanography, 2010, 55(3): 1159-1171. DOI: 10.4319/lo.2010.55.3.1159. [36] ZHANG Y L, ZHOU L, ZHOU Y Q, et al. Chromophoric dissolved organic matter in inland waters: present knowledge and future challenges[J]. Science of the Total Environment, 2021, 759: 143550. DOI: 10.1016/j.scitotenv.2020.143550. [37] DERRIEN M, BROGI S R, GONÇALVES-ARAUJO R. Characterization of aquatic organic matter: assessment, perspectives and research priorities[J]. Water Research, 2019, 163: 114908. DOI: 10.1016/j.watres.2019.114908. [38] AMADO A M, FARJALLA V F, ESTEVES F D A, et al. Complementary pathways of dissolved organic carbon removal pathways in clear-water Amazonian ecosystems: photochemical degradation and bacterial uptake[J]. FEMS Microbiology Ecology, 2006, 56(1): 8-17. DOI: 10.1111/j.1574-6941.2006.00028.x. [39] 孙一鑫,王嘉旋,宋可心,等.浒苔释放有色溶解有机物的光降解研究[J].江苏海洋大学学报(自然科学版),2020,29(2):27-32. DOI: 10.3969/j.issn.2096-8248.2020.02.005. [40] KRAMER G D, HERNDL G J. Photo- and bioreactivity of chromophoric dissolved organic matter produced by marine bacterioplankton[J]. Aquatic Microbial Ecology, 2004, 36(3): 239-246. DOI: 10.3354/ame036239. [41] 陈慧敏,俞晓琴,朱俊羽,等.太湖有色可溶性有机物(CDOM)对COD及BOD5的指示意义[J].湖泊科学,2021,33(5):1376-1388. DOI: 10.18307/2021.0507. [42] MIAN H R, HU G J, HEWAGE K, et al. Prioritization of unregulated disinfection by-products in drinking water distribution systems for human health risk mitigation: a critical review[J]. Water Research, 2018, 147: 112-131. DOI: 10.1016/j.watres.2018.09.054. [43] 蔡力童,李青松,马晓雁,等.基于EEMs和DOM分离的荧光特征及DBPsFP研究:以南方某市水源水为例[J].中国环境科学,2022,42(4):1745-1753. DOI: 10.3969/j.issn.1000-6923.2022.04.029. [44] HUA B, VEUM K, YANG J, et al. Parallel factor analysis of fluorescence EEM spectra to identify THM precursors in lake waters[J]. Environmental Monitoring and Assessment, 2010, 161(1/4): 71-81. DOI: 10.1007/s10661-008-0728-1. [45] FANG C, YANG X, DING S K, et al. Characterization of dissolved organic matter and its derived disinfection byproduct formation along the Yangtze River[J]. Environmental Science & Technology, 2021, 55(18): 12326-12336. DOI: 10.1021/acs.est.1c02378. [46] SHARMA N, MOHAPATRA S, PADHYE L P, et al. Role of precursors in the formation of trihalomethanes during chlorination of drinking water and wastewater effluents from a metropolitan region in western India[J]. Journal of Water Process Engineering, 2021, 40: 101928. DOI: 10.1016/j.jwpe.2021.101928. [47] MARTINS E O, DRAKENBERG T. Cadmium(Ⅱ), zinc(Ⅱ), and copper(Ⅱ) ions binding to bovine serum albumin. A 113Cd NMR study[J]. Inorganica Chimica Acta, 1982, 67: 71-74. DOI: 10.1016/S0020-1693(00)85042-2. [48] PLAZA C, BRUNETTI G, SENESI N, et al. Molecular and quantitative analysis of metal ion binding to humic acids from sewage sludge and sludge-amended soils by fluorescence spectroscopy[J]. Environmental Science & Technology, 2006, 40(3): 917-923. DOI: 10.1021/es051687w. [49] XU H C, ZOU L, GUAN D X, et al. Molecular weight-dependent spectral and metal binding properties of sediment dissolved organic matter from different origins[J]. Science of the Total Environment, 2019, 665: 828-835. DOI: 10.1016/j.scitotenv.2019.02.186. [50] ZHAO C, GAO S J, ZHOU L, et al. Dissolved organic matter in urban forestland soil and its interactions with typical heavy metals: a case of Daxing District, Beijing[J]. Environmental Science and Pollution Research International, 2019, 26(3): 2960-2973. DOI: 10.1007/s11356-018-3860-7. [51] XU H C, GUAN D X, ZOU L, et al. Contrasting effects of photochemical and microbial degradation on Cu(Ⅱ) binding with fluorescent DOM from different origins[J]. Environmental Pollution, 2018, 239: 205-214. DOI: 10.1016/j.envpol.2018.03.108. [52] 许明,刘伟京,白永刚,等.太湖蓝藻水华期可溶有机物的生物降解[J].中国环境科学,2018,38(9):3494-3501. DOI: 10.19674/j.cnki.issn1000-6923.2018.0378. [53] ZHOU L, ZHOU Y Q, ZHANG Y L, et al. Hydrological controls on dissolved organic matter composition throughout the aquatic continuum of the watershed of Selin Co, the largest lake on the Tibetan Plateau[J]. Environmental Science & Technology, 2023, 57(11): 4668-4678. DOI: 10.1021/acs.est.2c08257. [54] MARSCHNER B, BREDOW A. Temperature effects on release and ecologically relevant properties of dissolved organic carbon in sterilised and biologically active soil samples[J]. Soil Biology and Biochemistry, 2002, 34(4): 459-466. DOI: 10.1016/S0038-0717(01)00203-6. [55] TANG G, LI X L, WANG Z, et al. Dynamic relationship between dissolved organic matter and soluble microbial products during wastewater treatment[J]. Journal of Cleaner Production, 2021, 317: 128448. DOI: 10.1016/j.jclepro.2021.128448. [56] YLLA I, ROMANÍ A M, SABATER S. Labile and recalcitrant organic matter utilization by river biofilm under increasing water temperature[J]. Microbial Ecology, 2012, 64(3): 593-604. DOI: 10.1007/s00248-012-0062-6. [57] CORY R M, WARD C P, CRUMP B C, et al. Sunlight controls water column processing of carbon in Arctic fresh waters[J]. Science, 2014, 345(6199): 925-928. DOI: 10.1126/science.1253119. [58] KOEHLER B, LANDELIUS T, WEYHENMEYER G A, et al. Sunlight-induced carbon dioxide emissions from inland waters[J]. Global Biogeochemical Cycles, 2014, 28(7): 696-711. DOI: 10.1002/2014GB004850. [59] ALGESTEN G, SOBEK S, BERGSTRÖM A K, et al. Role of lakes for organic carbon cycling in the boreal zone[J]. Global Change Biology, 2004, 10(1): 141-147. DOI: 10.1111/j.1365-2486.2003.00721.x. [60] HANSSON L A, NICOLLE A, GRANÉLI W, et al. Food-chain length alters community responses to global change in aquatic systems[J]. Nature Climate Change, 2013, 3(3): 228-233. DOI: 10.1038/nclimate1689. [61] CARSTEA E M, BAKER A, PAVELESCU G, et al. Continuous fluorescence assessment of organic matter variability on the Bournbrook River, Birmingham, UK[J]. Hydrological Processes, 2009, 23(13): 1937-1946. DOI: 10.1002/hyp.7335. [62] FENG L, AN Y Q, XU J Z, et al. Biochemical evolution of dissolved organic matter during snow metamorphism across the ablation season for a glacier on the central Tibetan Plateau[J]. Scientific Reports, 2020, 10(1): 6123. DOI: 10.1038/s41598-020-62851-w. [63] 郝亚蒙.基于遥感的三江源湖泊面积变化及影响因子分析[D].北京:中国地质大学,2018. [64] ZHOU Y Q, ZHOU L, ZHANG Y L, et al. Autochthonous dissolved organic matter potentially fuels methane ebullition from experimental lakes[J]. Water Research, 2019, 166: 115048. DOI: 10.1016/j.watres.2019.115048. [65] AN S L, MAO Z D, CHEN M L, et al. Sunlight irradiation promotes both the chemodiversity of terrestrial DOM and the biodiversity of bacterial community in a subalpine lake[J]. Environmental Research, 2023, 227: 115823. DOI: 10.1016/j.envres.2023.115823. [66] 章程.岩溶区河流水化学昼夜变化与生物地球化学过程[J].中国岩溶,2015,34(1):1-8. DOI: 10.11932/karst20150101. [67] YAMASHITA Y, JAFFÉ R, MAIE N, et al. Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC)[J]. Limnology and Oceanography, 2008, 53(5): 1900-1908. DOI: 10.4319/lo.2008.53.5.1900. [68] 任浩宇,姚昕,马飞扬.微生物降解影响下湖泊草源DOM与重金属的相互作用[J].中国环境科学,2020,40(11): 4989-4997. DOI: 10.19674/j.cnki.issn1000-6923.2020.0552. [69] 苑浩达,刘睿,倪茂飞,等.典型喀斯特河流溶解性有机质生物降解特性及其温度敏感性研究[J].环境科学学报,2022,42(3):218-226. DOI: 10.13671/j.hjkxxb.2021.0333. [70] 叶琳琳,孔繁翔,史小丽,等.富营养化湖泊溶解性有机碳生物可利用性研究进展[J].生态学报,2014,34(4): 779-788. DOI: 10.5846/stxb201209241349. [71] LØNBORG C, ÁLVAREZ-SALGADO X A, DAVIDSON K, et al. Assessing the microbial bioavailability and degradation rate constants of dissolved organic matter by fluorescence spectroscopy in the coastal upwelling system of the Ría de Vigo[J]. Marine Chemistry, 2010, 119(1/2/3/4): 121-129. DOI: 10.1016/j.marchem.2010.02.001. [72] XU H C, GUO L D. Intriguing changes in molecular size and composition of dissolved organic matter induced by microbial degradation and self-assembly[J]. Water Research, 2018, 135: 187-194. DOI: 10.1016/j.watres.2018.02.016. [73] CHEN Q, LØNBORG C, CHEN F, et al. Increased microbial and substrate complexity result in higher molecular diversity of the dissolved organic matter pool[J]. Limnology and Oceanography, 2022, 67(11): 2360-2373. DOI: 10.1002/lno.12206. [74] COBLE P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry, 1996, 51(4): 325-346. DOI: 10.1016/0304-4203(95)00062-3. [75] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. DOI: 10.1021/es034354c. [76] YU H B, SONG Y H, DU E D, et al. Comparison of PARAFAC components of fluorescent dissolved and particular organic matter from two urbanized rivers[J]. Environmental Science and Pollution Research International, 2016, 23(11): 10644-10655. DOI: 10.1007/s11356-016-6232-1. [77] PITTA E, ZERI C, TZORTZIOU M, et al. Seasonal variations in dissolved organic matter composition using absorbance and fluorescence spectroscopy in the Dardanelles Straits-North Aegean Sea mixing zone[J]. Continental Shelf Research, 2017, 149: 82-95. DOI: 10.1016/j.csr.2016.07.013. [78] 王晓江,黄廷林,李楠,等.峡谷分层型水源水库表层沉积物溶解性有机物光谱特征[J].湖泊科学,2018,30(6): 1625-1635. DOI: 10.18307/2018.0614. [79] 周石磊,陈召莹,张甜娜,等.白洋淀典型淀区沉积物间隙水溶解性有机物的光谱时空演变特征[J].环境科学,2021,42(8):3730-3742. DOI: 10.13227/j.hjkx.202011063. [80] 黄廷林,方开凯,张春华,等.利用UV-vis及EEMs对比冬季完全混合下两个不同特征水库溶解性有机物的光学特性[J].环境科学,2016,37(12):4577-4585. DOI: 10.13227/j.hjkx.201606016. [81] NI M F, LI S Y. Dynamics and internal links of dissolved carbon in a karst river system: implications for composition, origin and fate[J]. Water Research, 2022, 226: 119289. DOI: 10.1016/j.watres.2022.119289. [82] SMITH D F, PODGORSKI D C, RODGERS R P, et al. 21 Tesla FT-ICR mass spectrometer for ultrahigh-resolution analysis of complex organic mixtures[J]. Analytical Chemistry, 2018, 90(3): 2041-2047. DOI: 10.1021/acs.analchem.7b04159. [83] CHEN Q, CHEN F, GONSIOR M, et al. Correspondence between DOM molecules and microbial community in a subtropical coastal estuary on a spatiotemporal scale[J]. Environment International, 2021, 154: 106558. DOI: 10.1016/j.envint.2021.106558. [84] XU L, HU Q, JIAN M F, et al. Exploring the optical properties and molecular characteristics of dissolved organic matter in a large river-connected lake (Poyang Lake, China) using optical spectroscopy and FT-ICR MS analysis[J]. Science of the Total Environment, 2023, 879: 162999. DOI: 10.1016/j.scitotenv.2023.162999. |
[1] | 童凌晨, 李强, 岳鹏鹏. 基于CiteSpace的喀斯特土壤有机碳研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 22-34. |
[2] | 邹华, 周享春, 孙梅香, 王玉龙. 溴酚蓝与牛血清白蛋白的相互作用研究[J]. 广西师范大学学报(自然科学版), 2014, 32(2): 82-87. |
[3] | 周伟, 刘恺, 李凤莲, 蓝家湖. 广西河池地区人类干扰下的河流生境破碎化评价[J]. 广西师范大学学报(自然科学版), 2010, 28(4): 90-95. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |