广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (3): 17-26.doi: 10.16088/j.issn.1001-6600.2023081702

• 综述 • 上一篇    下一篇

毕赤酵母作为基础研究的新兴模式生物研究进展

艾聪聪1,2, 龚国利1,2*, 焦小雨1,2, 田露1,2, 盖中朝1,2, 缑敬轩1,2, 李慧1,2   

  1. 1.陕西科技大学 生物与医药学院, 陕西 西安 710021;
    2.陕西科技大学 食品科学与工程学院, 陕西 西安 710021
  • 收稿日期:2023-08-17 修回日期:2023-09-17 发布日期:2024-05-31
  • 通讯作者: 龚国利(1976—), 男, 内蒙古丰镇人, 陕西科技大学教授, 博导。E-mail: gongguoli@sust.edu.cn
  • 基金资助:
    国家自然科学基金(32200974, 32202007)

Komagataella phaffii Serves as a Model Organism for Emerging Basic Research

AI Congcong1,2, GONG Guoli1,2*, JIAO Xiaoyu1,2, TIAN Lu1,2, GAI Zhongchao1,2, GOU Jingxuan1,2, LI Hui1,2   

  1. 1. School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an Shaanxi 710021, China;
    2. School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an Shaanxi 710021, China
  • Received:2023-08-17 Revised:2023-09-17 Published:2024-05-31

摘要: 毕赤酵母Komagataella phaffii已经被广泛应用于生物技术行业,近年来,其作为模式生物的潜力逐渐受到关注。目前,酿酒酵母是最常用酵母模型,毕赤酵母与酿酒酵母在2.5亿年前分化,相比酿酒酵母,毕赤酵母进化速度较慢,更多保留了古代酵母祖先的特征,还具有利用甲醇作为唯一碳源生长的能力,这些特征使其成为研究真核生物分子细胞生物学的有价值模式生物。本文总结了毕赤酵母基础生物学方面的研究成果,包括甲醇同化、过氧化物酶体生成、交配与产孢行为,以及蛋白质分泌、脂质合成和细胞壁形成等过程,旨在全面且系统地综述毕赤酵母作为模式生物的研究进展。

关键词: 毕赤酵母, 甲基营养型酵母, 真核生物, 重组表达, 模式生物

Abstract: Komagataella phaffii has been widely used in the pharmaceutical and biotechnology industries. In recent years, its potential as a research model organism has gained attention. Although baker's yeast is the most commonly used yeast model in research, it limits our understanding of the same organism. K. phaffii, which diverged from baker's yeast 250 million years ago, evolves at a slower rate and retains characteristics of ancient yeast ancestors, making it more similar to higher eukaryotic cells. K. phaffii can efficiently assimilate methanol as the sole carbon source, making it a valuable model organism for studying molecular cell biology of eukaryotes. This article reviews the research progress of using K. phaffii as a model organism, including methanol assimilation, peroxisome formation, mating and sporulation behavior, as well as protein secretion, lipid synthesis, and cell wall formation processes. By comparing the data of K. phaffii with other yeast species such as baker's yeast, this article highlights the great potential of K. phaffii in basic research, aiming to present a comprehensive and systematic review of the research progress on K. phaffii as a model organism.

Key words: Komagataella phaffii, methyltrophic yeast, eukaryote, recombinat expression, model organism

中图分类号:  Q78

[1] GOFFEAU B A, BARRELL B G, BUSSEY H, et al. Life with 6000 genes[J]. Science, 1996, 274(5287): 546-567. DOI: 10.1126/science.274.5287.546.
[2] KARBALAEI M, REZAEE S A, FARSIANI H. Pichia pastoris: a highly successful expression system for optimal synthesis of heterologous proteins[J]. Journal of Cellular Physiology, 2020, 235(9): 5867-5881. DOI: 10.1002/jcp.29583.
[3] 谷洋, 连佳长, 黄磊, 等. 毕赤酵母基因编辑技术研究进展[J]. 微生物学通报, 2020, 47(2): 602-614. DOI: 10.13344/j.microbiol.china.190257.
[4] RILEY R, HARIDAS S, WOLFE K H, et al. Comparative genomics of biotechnologically important yeasts[J]. Proceedings of the National Academy Sciences of the United States of America, 2016, 113(35): 9882-9887. DOI: 10.1073/pnas.1603941113.
[5] SHEN X X, OPULENTE D A, KOMINEK J, et al. Tempo and mode of genome evolution in the budding yeast subphylum[J]. Cell, 2018, 175(6): 1533-1545. DOI: 10.1016/j.cell.2018.10.023.
[6] YAMADA Y, MATSUDA M, MAEDA K, et al. The phylogenetic relationships of methanol-assimilating yeasts based on the partial sequences of 18S and 26S ribosomal RNAs: the proposal of Komagataella gen. nov. (Saccharomycetaceae)[J]. Bioscience, Biotechnology, and Biochemistry, 1995, 59(3): 439-444. DOI: 10.1271/bbb.59.439.
[7] KURTZMAN C P. Description of Komagataella phaffii sp. nov. and the transfer of Pichia pseudopastoris to the methylotrophic yeast genus Komagataella[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(Pt2): 973-976. DOI: 10.1099/ijs.0.63491-0.
[8] CEREGHINO J L, CREGG J M. Heterologous protein expression in the methylotrophic yeast Pichia pastoris[J]. FEMS Microbiology Reviews, 2000, 24(1): 45-66. DOI: 10.1111/j.1574-6976.2000.tb00532.x.
[9] AHMAD M, HIRZ M, PICHLER H, et al. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production[J]. Applied Microbiology and Biotechnology, 2014, 98(12): 5301-5317. DOI: 10.1007/s00253-014-5732-5.
[10] 吴瑕, 刘志军, 查健, 等. 蛋清溶菌酶的重组合成及粗酶生化特性研究[J]. 食品与发酵工业, 2023, 49(4): 209-215. DOI: 10.13995/j.cnki.11-1802/ts.033346.
[11] AHMAD M, WINKLER C M, KOLMBAUER M, et al. Pichia pastoris protease-deficient and auxotrophic strains generated by a novel, user-friendly vector toolbox for genedeletion[J]. Yeast, 2019, 36(9): 557-570. DOI: 10.1002/yea.3426.
[12] BERNAUER L, RADKOHL A, LEHMAYER L G K, et al. Komagataella phaffii as emerging model organism in fundamental research[J]. Frontiers Microbiology, 2020, 11:607028. DOI: 10.3389/fmicb.2020.607028.
[13] BRAUN-GALLEANI S, DIAS J A, COUGHLAN A Y, et al. Genomic diversity and meiotic recombination among isolates of the biotech yeast Komagataella phaffii (Pichia pastoris)[J]. Microbial Cell Factories, 2019, 18(1): 211. DOI: 10.1186/s12934-019-1260-4.
[14] NAZARKO T Y, POLUPANOV A S, MANJITHAYA R R, et al. The requirement of sterol glucoside for pexophagy in yeast is dependent on the species and nature of peroxisome inducers[J]. Molecular Biology of the Cell, 2007, 18(1): 106-118. DOI: 10.1091/mbc.e06-06-0554.
[15] STURMBERGER L, CHAPPELL T, GEIER M, et al. Refined Pichia pastoris reference genome sequence[J]. Journal of Biotechnology, 2016, 235: 121-131. DOI: 10.1016/j.jbiotec.2016.04.023.
[16] KÜBERL A, SCHNEIDER J, THALLINGER G G, et al. High-quality genome sequence of Pichia pastoris CBS7435[J]. Journal of Biotechnology, 2011, 154(4): 312-320. DOI: 10.1016/j.jbiotec.2011.04.014.
[17] MATTANOVICH D, CALLEWAERT N, ROUZÉ P, et al. Open access to sequence: browsing the Pichia pastoris genome[J]. Microbial Cell Factories, 2009, 8: 53. DOI: 10.1186/1475-2859-8-53.
[18] VALLI M, TATTO N E, PEYMANN A, et al. Curation of the genome annotation of Pichia pastoris (Komagataella phaffii) CBS7435 from gene level to protein function[J]. FEMS Yeast Research, 2016, 16(6): fow051. DOI: 10.1093/femsyr/fow051.
[19] COSANO I, ALVAREZ P, MOLINA M, et al. Cloning and sequence analysis of the Pichia pastoris TRP1, IPP1 and HIS3 genes[J]. Yeast, 1998, 14(9): 861-867. DOI: 10.1002/(SICI)1097-0061(19980630)14:9<861::AID-YEA276>3.0.CO;2-N.
[20] LIN CEREGHINO G P, LIN CEREGHINO J, SUNGA A J, et al. New selectable marker/auxotrophic host strain combinations for molecular genetic manipulation of Pichia pastoris[J]. Gene, 2001, 263(1/2): 159-169. DOI: 10.1016/S0378-1119(00)00576-x.
[21] ZHU J X, GONG R Q, ZHU Q Y, et al. Genome-wide determination of gene essentiality by transposon insertion sequencing in yeast Pichia pastoris[J]. Scientific Reports, 2018, 8(1): 10223. DOI: 10.1038/s41598-018-28217-z.
[22] CHUNG B K S, LAKSHMANAN M, KLEMENT M, et al. Metabolic reconstruction and flux analysis of industrial Pichia yeasts[J]. Applied Microbiology and Biotechnology, 2013, 97(5): 1865-1873. DOI: 10.1007/s00253-013-4702-7.
[23] COUGHLAN A Y, HANSON S J, BYNE K P, et al. Centromeres of the yeast Komagataella phaffii (Pichia pastoris) have a simple inverted-repeat structure[J]. Genome Biology and Evolution, 2016, 8(8): 2482-2492. DOI: 10.1093/gbe/evw178.
[24] FITZGERALD-HAYES M, CLARKE L, CARBON J. Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs[J]. Cell, 1982, 29(1): 235-244. DOI: 10.1016/0092-8674(82)90108-8.
[25] WOOD V, GWILLIAM R, RAJANDREAM M A, et al. The genome sequence of Schizosaccharomyces pombe[J]. Nature, 2002, 415(6874): 871-880. DOI: 10.1038/nature724.
[26] HANSON S J, WOLFE K H. An evolutionary perspective on yeast mating-type switching[J]. Genetics, 2017, 206(1): 9-32. DOI: 10.1534/genetics.117.202036.
[27] HABER J E. Mating-type genes and MAT switching in Saccharomyces cerevisiae[J]. Genetics, 2012, 191(1): 33-64. DOI: 10.1534/genetics.111.134577.
[28] MAEKAWA H, KANEKO Y. Inversion of the chromosomal region between two mating type loci switches the mating type in Hansenula polymorpha[J]. PLoS Genetics, 2014, 10(11): e1004796. DOI: 10.1371/journal.pgen.1004796.
[29] HANSON S J, BYRNE K P, WOLFE K H. Mating-type switching by chromosomal inversion in methylotrophic yeasts suggests an origin for the three-locus Saccharomyces cerevisiae system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(45): E4851-E4858. DOI: 10.1073/pnas.1416014111.
[30] 赵禹, 赵雅坤, 刘士琦, 等. 非常规酵母的分子遗传学及合成生物学研究进展[J]. 微生物学报, 2020, 60(8): 1574-1591. DOI: 10.13343/j.cnki.wsxb.20190512.
[31] SCHRICK K, GARVIK B, HARTWELL L H, et al. Mating in Saccharomyces cerevisiae: the role of the pheromone signal transduction pathway in the chemotropic response to pheromone[J]. Genetics ,1997, 147(1): 19-32. DOI: 10.1093/genetics/147.1.19.
[32] HEISTINGER L, GASSER B, MATTANOVICH D. Creation of stable heterothallic strains of Komagataella phaffii enables dissection of mating gene regulation[J]. Molecuar and Cellular Biology, 2017, 38(2): e00398-17. DOI: 10.1128/MCB.00398-17.
[33] HEISTINGER L, MOSER J, TATTO N E, et al. Identification and characterization of the Komagataella phaffii mating pheromone genes[J]. FEMS Yeast Research, 2018, 18(5): foy051. DOI: 10.1093/femsyr/foy051.
[34] GOLEMIS EA, KHAZAK V. Alternative yeast two-hybrid systems. The interaction trap and interaction mating[J]. Methods in Molecular Biology, 1997, 63: 197-218. DOI: 10.1385/0-89603-481-X:197.
[35] 欧阳立明, 张惠展, 张嗣同,等. 巴斯德毕赤酵母的基因表达系统研究进展[J]. 生物化学与生物物理进展, 2000, 27(2): 151-154. DOI: 10.3321/j.issn:1000-3282.2000.02.001.
[36] VAN DER KLEI I J, YURIMOTO H, SAKAI Y, et al. The significance of peroxisomes in methanol metabolism in methylotrophic yeast[J]. Biochimica et Biophysica Acta-Molecular Cell Research, 2006, 1763(12): 1453-1462. DOI: 10.1016/j.bbamcr.2006.07.016.
[37] YURIMOTO H, OKU M, SAKAI Y. Yeast methylotrophy: metabolism,gene regulation and peroxisome homeostasis[J]. International Journal of Microbiology, 2011, 2011: 101298. DOI: 10.1155/2011/101298.
[38] AGRAWAL G, SUBRAMANI S. De novo peroxisome biogenesis: evolving concepts and conundrums[J]. Biochimica et Biophysica Acta-Molecular Cell Research, 2016, 1863(5):892-901. DOI: 10.1016/j.bbamcr.2015.09.014.
[39] YUAN W, VEENHUIS M, VAN DER KLEI I J. The birth of yeast peroxisomes[J]. Biochimica et Biophysica Acta-Molecular Cell Research, 2016, 1863(5): 902-910. DOI: 10.1016/j.bbamcr.2015.09.008.
[40] DUNN W A, Jr, CREGG J M, KIEL J A K W, et al. Pexophagy: the selective autophagy of peroxisomes[J]. Autophagy, 2005, 1(2): 75-83. DOI: 10.4161/auto.1.2.1737.
[41] OKU M, SAKAI Y. Pexophagy in yeasts[J]. Biochimica et Biophysica Acta-Molecular Cell Research, 2016, 1863(5): 992-998. DOI: 10.1016/j.bbamcr.2015.09.023.
[42] MUKAIYAMA H, BABA M, OSUMI M, et al. Modification of a ubiquitin-like protein Paz2 conducted macropexophagy through formation of a novel membrane structure[J]. Molecular Biology of the Cell, 2004, 15(1): 58-70. DOI: 10.1091/mbc.e03-05-0340.
[43] CHIANG H L, SCHEKMAN R, HAMAMOTO S. Selective uptake of cytosolic, peroxisomal, and plasma membrane proteins into the yeast lysosome for degradation[J]. Journal of Biological Chemistry, 1996, 271(17): 9934-9941. DOI: 10.1074/jbc.271.17.9934.
[44] TIAN L, FU J P, WU M, et al. Evaluation of gallic acid on membrane damage of Yersinia enterocolitica and its application as a food preservative in pork[J]. International Journal of Food Microbiology, 2022, 374: 109720. DOI: 10.1016/j.ijfoodmicro.2022.109720.
[45] TIAN L, WANG X Y, ZHANG D, et al. Evaluation of the membrane damage mechanism of protocatechualdehyde against Yersinia enterocolitica and simulation of growth inhibition in pork[J]. Food Chemistry, 2021, 363: 130340. DOI: 10.1016/j.foodchem.2021.130340.
[46] YANG S Q, TIAN L, WANG X Y, et al. Metabolomics analysis and membrane damage measurement reveal the antibacterial mechanism of lipoic acid against Yersinia enterocolitica[J]. Food & Function, 2022, 13(22): 11476-11488. DOI: 10.1039/D2FO01306A.
[47] PICHLER H, EMMERSTORFER-AUGUSTIN A. Modification of membrane lipid compositions in single-celled organisms-from basics to applications[J]. Methods, 2018, 147: 50-65. DOI: 10.1016/j.ymeth.2018.06.009.
[48] WRIESSNEGGER T, LEITNER E, BELEGRATIS M R, et al. Lipid analysis of mitochondrial membranes from the yeast Pichia pastoris[J]. Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids, 2009,1791(3): 166-172. DOI: 10.1016/j.bbalip.2008.12.017.
[49] WRIESSNEGGER T, GÜBITZ G, LEITNER E, et al. Lipid composition of peroxisomes from the yeast Pichia pastoris grown on different carbon sources[J]. Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids, 2007, 1771(4): 455-461. DOI: 10.1016/j.bbalip.2007.01.004.
[50] KLUG L, TARAZONA P, GRUBER C, et al. The lipidome and proteome of microsomes from the methylotrophic yeast Pichia pastoris[J]. Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids, 2014, 1841(2): 215-226. DOI: 10.1016/j.bbalip.2013.11.005.
[51] WEI D, LI J, SHEN M D, et al. Cellular production of n-3 PUFAs and reduction of n-6-to-n-3 ratios in the pancreatic beta-cells and islets enhance insulin secretion and confer protection against cytokine-induced cell death[J]. Diabetes, 2010, 59(2): 471-478. DOI: 10.2337/db09-0284.
[52] ZINSER E, PALTAU F, DAUM G. Sterol composition of yeast organelle membranes and subcellular distribution of enzymes involved in sterol metabolism[J]. Journal of Bacteriology, 1993, 175(10): 2853-2858. DOI: 10.1128/jb.175.10.2853-2858.1993.
[53] MICHAELSON L V, ZÄUNER S, MARKHAM J E, et al. Functional characterization of a higher plant sphingolipid Delta4-desaturase: defining the role of sphingosine and sphingosine-1-phosphate in Arabidopsis[J]. Plant Physiology, 2009, 149(1): 487-498. DOI: 10.1104/pp.108.129411.
[54] KOCH B, SCHMIDT C, DAUM G. Storage lipids of yeasts: a survey of nonpolar lipid metabolism in Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica[J]. FEMS Microbiology Reviews, 2014, 38(5): 892-915. DOI: 10.1111/1574-6976.12069.
[55] TIAN L, WU M, LI H, et al. Transcriptome analysis of Micrococcus luteus in response to treatment with protocatechuic acid[J]. Journal of Applied Microbiology, 2022, 133(5): 3139-3149. DOI: 10.1111/jam.15743.
[56] WU M, TIAN L, FU J P, et al. Antibacterial mechanism of Protocatechuic acid against Yersinia enterocolitica and its application in pork[J]. Food Control, 2022, 133(Part A): 108573. DOI: 10.1016/j.foodcont.2021.108573.
[57] KOCK C, DUFRÊNE Y F, HEINISCH J J. Up against the wall: is yeast cell wall integrity ensured by mechanosensing in plasma membrane microdomains?[J]. Applied and Environmental Microbiology, 2015, 81(3): 806-811. DOI: 10.1128/AEM.03273-14.
[58] OHSAWA S, YURIMOTO H, SAKAI Y. Novel function of Wsc proteins as a methanol-sensing machinery in the yeast Pichia pastoris[J]. Molecular Microbiology, 2017, 104(2): 349-363. DOI: 10.1111/mmi.13631.
[59] COSANO I C, MARTÍN H, FLÁNDEZ M, et al. Pim1, a MAP kinase involved in cell wall integrity in Pichia pastoris[J]. Molecular Genetics and Genomics, 2001, 265(4): 604-614. DOI: 10.1007/s004380100452.
[60] ZHANG C B, MA Y, MIAO H B, et al. Transcriptomic analysis of Pichia pastoris (Komagataella phaffii) GS115 during heterologous protein production using a high-cell-density fed-batch cultivation strategy[J]. Frontiers in Microbiology, 2020, 11: 463. DOI: 10.3389/fmicb.2020.00463.
[61] BRADY J R, WHITTAKER C A, TAN M C, et al. Comparative genome-scale analysis of Pichia pastoris variants informs selection of an optimal base strain[J]. Biotechnology and Bioengineering, 2020, 117(2): 543-555. DOI: 10.1002/bit.27209.
[62] LARSEN S, WEAVER J, DE SA CAMPOS K, et al. Mutant strains of Pichia pastoris with enhanced secretion of recombinant proteins[J]. Biotechnology Letters, 2013, 35(11): 1925-1935. DOI: 10.1007/s10529-013-1290-7.
[63] 彭毅, 杨希才, 康良仪. 影响甲醇酵母外源蛋白表达的因素[J]. 生物技术通报, 2000, 16(4): 33-36. DOI: 10.3969/j.issn.1002-5464.2000.04.0D7.
[64] Invitrogen. Pichia Expression Kit[Z]. Carlsbad, CA: Invitrogen Corporation, 2014.
[65] CREGG J M, TSCHOPP J F, STILLMAN C, et al. High-level expression and efficient assembly of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris[J]. Bio/Technology, 1987, 5(5): 479-485. DOI: 10.1038/nbt0587-479.
[66] SREEKRISHNA K, NELLES L, POTENZ R, et al. High-level expression, purification, and characterization of recombinant human tumor necrosis factor synthesized in the methylotrophic yeast Pichia pastoris[J]. Biochemistry, 1989, 28(9): 4117-4125. DOI: 10.1021/bi00435a074.
[67] SIEGEL R S, BUCKHOLZ R G, THILL G P, et al. Production of epider growth factor in methylotrophic yeast cells:WO9010697[P]. 1990-03-15.
[68] MATTEWS B J, VOSSHALL L B. How to turn an organism into a model organism in 10 ‘easy’ steps[J]. The Journal of Experimental Biology, 2020, 223(Pt Suppl 1): jeb218198. DOI: 10.1242/jeb.218198.
[69] DICARLO J E, CONLEY A J, PENTTILÄ M, et al. Yeast oligo-mediated genome engineering (YOGE)[J]. ACS Synthetic Biology, 2013, 2(12): 741-749. DOI: 10.1021/sb400117c.
[70] GIAEVER G, NISLOW C. The yeast deletion collection: a decade of functional genomics[J]. Genetics, 2014, 197(2): 451-465. DOI: 10.1534/genetics.114.161620.
[71] BERNAUER L, RADKOHL A, GABRIELA L, et al. Komagataella phaffii as emerging model organism in fundamental research[J]. Frontiers in Microbiology, 2021, 11: 607028. DOI: 10.3389/fmicb.2020.607028.
[1] 李雅园, 王光幸, 李新闻, 郭振华, 关桂君. 青鳉nup58的表达及其在性别分化中的潜在作用[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 168-179.
[2] 邹镭, 邢兵, 杨柳. 利用CRISPR/Cas9系统构建LMNA基因突变AC16人心肌细胞系[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 163-170.
[3] 周晶, 李银玲, 陈俏媛, 林万华. 条件敲除Sdr9c7基因小鼠的构建及表型研究[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 147-153.
[4] 蒋骄云, 冯龙, 曲宪成, 田文斐. 黄鳝性逆转相关基因F4的克隆和表达分析[J]. 广西师范大学学报(自然科学版), 2013, 31(4): 121-127.
[5] 赵志常, 张建军, 张皖蓉, 刘震, 李旭锋, 杨毅. 拟南芥DnaJ蛋白的过量表达对细菌耐盐性的影响[J]. 广西师范大学学报(自然科学版), 2010, 28(1): 54-57.
[6] 陈敦学, 石常友, 宾石玉, 褚武英, 唐万林, 林谦. 哺乳藏猪肠道CAT1、EAAC1和Pept1 mRNA的发育性表达分析[J]. 广西师范大学学报(自然科学版), 2010, 28(1): 63-67.
[7] 赵发兰, 宾石玉, 陈敦学, 农小献, 刘希良. 斑鳜肌球蛋白轻链1基因cDNA的克隆及其分析[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 99-103.
[8] 吴雅婕, 杨跃飞, 范博钧, 徐磊, 鞠辉明. 利用改良的CRISPR/Cas9系统构建猪PPARD载体及效率检测[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 132-138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发