|
广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (3): 17-26.doi: 10.16088/j.issn.1001-6600.2023081702
艾聪聪1,2, 龚国利1,2*, 焦小雨1,2, 田露1,2, 盖中朝1,2, 缑敬轩1,2, 李慧1,2
AI Congcong1,2, GONG Guoli1,2*, JIAO Xiaoyu1,2, TIAN Lu1,2, GAI Zhongchao1,2, GOU Jingxuan1,2, LI Hui1,2
摘要: 毕赤酵母Komagataella phaffii已经被广泛应用于生物技术行业,近年来,其作为模式生物的潜力逐渐受到关注。目前,酿酒酵母是最常用酵母模型,毕赤酵母与酿酒酵母在2.5亿年前分化,相比酿酒酵母,毕赤酵母进化速度较慢,更多保留了古代酵母祖先的特征,还具有利用甲醇作为唯一碳源生长的能力,这些特征使其成为研究真核生物分子细胞生物学的有价值模式生物。本文总结了毕赤酵母基础生物学方面的研究成果,包括甲醇同化、过氧化物酶体生成、交配与产孢行为,以及蛋白质分泌、脂质合成和细胞壁形成等过程,旨在全面且系统地综述毕赤酵母作为模式生物的研究进展。
中图分类号: Q78
[1] GOFFEAU B A, BARRELL B G, BUSSEY H, et al. Life with 6000 genes[J]. Science, 1996, 274(5287): 546-567. DOI: 10.1126/science.274.5287.546. [2] KARBALAEI M, REZAEE S A, FARSIANI H. Pichia pastoris: a highly successful expression system for optimal synthesis of heterologous proteins[J]. Journal of Cellular Physiology, 2020, 235(9): 5867-5881. DOI: 10.1002/jcp.29583. [3] 谷洋, 连佳长, 黄磊, 等. 毕赤酵母基因编辑技术研究进展[J]. 微生物学通报, 2020, 47(2): 602-614. DOI: 10.13344/j.microbiol.china.190257. [4] RILEY R, HARIDAS S, WOLFE K H, et al. Comparative genomics of biotechnologically important yeasts[J]. Proceedings of the National Academy Sciences of the United States of America, 2016, 113(35): 9882-9887. DOI: 10.1073/pnas.1603941113. [5] SHEN X X, OPULENTE D A, KOMINEK J, et al. Tempo and mode of genome evolution in the budding yeast subphylum[J]. Cell, 2018, 175(6): 1533-1545. DOI: 10.1016/j.cell.2018.10.023. [6] YAMADA Y, MATSUDA M, MAEDA K, et al. The phylogenetic relationships of methanol-assimilating yeasts based on the partial sequences of 18S and 26S ribosomal RNAs: the proposal of Komagataella gen. nov. (Saccharomycetaceae)[J]. Bioscience, Biotechnology, and Biochemistry, 1995, 59(3): 439-444. DOI: 10.1271/bbb.59.439. [7] KURTZMAN C P. Description of Komagataella phaffii sp. nov. and the transfer of Pichia pseudopastoris to the methylotrophic yeast genus Komagataella[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(Pt2): 973-976. DOI: 10.1099/ijs.0.63491-0. [8] CEREGHINO J L, CREGG J M. Heterologous protein expression in the methylotrophic yeast Pichia pastoris[J]. FEMS Microbiology Reviews, 2000, 24(1): 45-66. DOI: 10.1111/j.1574-6976.2000.tb00532.x. [9] AHMAD M, HIRZ M, PICHLER H, et al. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production[J]. Applied Microbiology and Biotechnology, 2014, 98(12): 5301-5317. DOI: 10.1007/s00253-014-5732-5. [10] 吴瑕, 刘志军, 查健, 等. 蛋清溶菌酶的重组合成及粗酶生化特性研究[J]. 食品与发酵工业, 2023, 49(4): 209-215. DOI: 10.13995/j.cnki.11-1802/ts.033346. [11] AHMAD M, WINKLER C M, KOLMBAUER M, et al. Pichia pastoris protease-deficient and auxotrophic strains generated by a novel, user-friendly vector toolbox for genedeletion[J]. Yeast, 2019, 36(9): 557-570. DOI: 10.1002/yea.3426. [12] BERNAUER L, RADKOHL A, LEHMAYER L G K, et al. Komagataella phaffii as emerging model organism in fundamental research[J]. Frontiers Microbiology, 2020, 11:607028. DOI: 10.3389/fmicb.2020.607028. [13] BRAUN-GALLEANI S, DIAS J A, COUGHLAN A Y, et al. Genomic diversity and meiotic recombination among isolates of the biotech yeast Komagataella phaffii (Pichia pastoris)[J]. Microbial Cell Factories, 2019, 18(1): 211. DOI: 10.1186/s12934-019-1260-4. [14] NAZARKO T Y, POLUPANOV A S, MANJITHAYA R R, et al. The requirement of sterol glucoside for pexophagy in yeast is dependent on the species and nature of peroxisome inducers[J]. Molecular Biology of the Cell, 2007, 18(1): 106-118. DOI: 10.1091/mbc.e06-06-0554. [15] STURMBERGER L, CHAPPELL T, GEIER M, et al. Refined Pichia pastoris reference genome sequence[J]. Journal of Biotechnology, 2016, 235: 121-131. DOI: 10.1016/j.jbiotec.2016.04.023. [16] KÜBERL A, SCHNEIDER J, THALLINGER G G, et al. High-quality genome sequence of Pichia pastoris CBS7435[J]. Journal of Biotechnology, 2011, 154(4): 312-320. DOI: 10.1016/j.jbiotec.2011.04.014. [17] MATTANOVICH D, CALLEWAERT N, ROUZÉ P, et al. Open access to sequence: browsing the Pichia pastoris genome[J]. Microbial Cell Factories, 2009, 8: 53. DOI: 10.1186/1475-2859-8-53. [18] VALLI M, TATTO N E, PEYMANN A, et al. Curation of the genome annotation of Pichia pastoris (Komagataella phaffii) CBS7435 from gene level to protein function[J]. FEMS Yeast Research, 2016, 16(6): fow051. DOI: 10.1093/femsyr/fow051. [19] COSANO I, ALVAREZ P, MOLINA M, et al. Cloning and sequence analysis of the Pichia pastoris TRP1, IPP1 and HIS3 genes[J]. Yeast, 1998, 14(9): 861-867. DOI: 10.1002/(SICI)1097-0061(19980630)14:9<861::AID-YEA276>3.0.CO;2-N. [20] LIN CEREGHINO G P, LIN CEREGHINO J, SUNGA A J, et al. New selectable marker/auxotrophic host strain combinations for molecular genetic manipulation of Pichia pastoris[J]. Gene, 2001, 263(1/2): 159-169. DOI: 10.1016/S0378-1119(00)00576-x. [21] ZHU J X, GONG R Q, ZHU Q Y, et al. Genome-wide determination of gene essentiality by transposon insertion sequencing in yeast Pichia pastoris[J]. Scientific Reports, 2018, 8(1): 10223. DOI: 10.1038/s41598-018-28217-z. [22] CHUNG B K S, LAKSHMANAN M, KLEMENT M, et al. Metabolic reconstruction and flux analysis of industrial Pichia yeasts[J]. Applied Microbiology and Biotechnology, 2013, 97(5): 1865-1873. DOI: 10.1007/s00253-013-4702-7. [23] COUGHLAN A Y, HANSON S J, BYNE K P, et al. Centromeres of the yeast Komagataella phaffii (Pichia pastoris) have a simple inverted-repeat structure[J]. Genome Biology and Evolution, 2016, 8(8): 2482-2492. DOI: 10.1093/gbe/evw178. [24] FITZGERALD-HAYES M, CLARKE L, CARBON J. Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs[J]. Cell, 1982, 29(1): 235-244. DOI: 10.1016/0092-8674(82)90108-8. [25] WOOD V, GWILLIAM R, RAJANDREAM M A, et al. The genome sequence of Schizosaccharomyces pombe[J]. Nature, 2002, 415(6874): 871-880. DOI: 10.1038/nature724. [26] HANSON S J, WOLFE K H. An evolutionary perspective on yeast mating-type switching[J]. Genetics, 2017, 206(1): 9-32. DOI: 10.1534/genetics.117.202036. [27] HABER J E. Mating-type genes and MAT switching in Saccharomyces cerevisiae[J]. Genetics, 2012, 191(1): 33-64. DOI: 10.1534/genetics.111.134577. [28] MAEKAWA H, KANEKO Y. Inversion of the chromosomal region between two mating type loci switches the mating type in Hansenula polymorpha[J]. PLoS Genetics, 2014, 10(11): e1004796. DOI: 10.1371/journal.pgen.1004796. [29] HANSON S J, BYRNE K P, WOLFE K H. Mating-type switching by chromosomal inversion in methylotrophic yeasts suggests an origin for the three-locus Saccharomyces cerevisiae system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(45): E4851-E4858. DOI: 10.1073/pnas.1416014111. [30] 赵禹, 赵雅坤, 刘士琦, 等. 非常规酵母的分子遗传学及合成生物学研究进展[J]. 微生物学报, 2020, 60(8): 1574-1591. DOI: 10.13343/j.cnki.wsxb.20190512. [31] SCHRICK K, GARVIK B, HARTWELL L H, et al. Mating in Saccharomyces cerevisiae: the role of the pheromone signal transduction pathway in the chemotropic response to pheromone[J]. Genetics ,1997, 147(1): 19-32. DOI: 10.1093/genetics/147.1.19. [32] HEISTINGER L, GASSER B, MATTANOVICH D. Creation of stable heterothallic strains of Komagataella phaffii enables dissection of mating gene regulation[J]. Molecuar and Cellular Biology, 2017, 38(2): e00398-17. DOI: 10.1128/MCB.00398-17. [33] HEISTINGER L, MOSER J, TATTO N E, et al. Identification and characterization of the Komagataella phaffii mating pheromone genes[J]. FEMS Yeast Research, 2018, 18(5): foy051. DOI: 10.1093/femsyr/foy051. [34] GOLEMIS EA, KHAZAK V. Alternative yeast two-hybrid systems. The interaction trap and interaction mating[J]. Methods in Molecular Biology, 1997, 63: 197-218. DOI: 10.1385/0-89603-481-X:197. [35] 欧阳立明, 张惠展, 张嗣同,等. 巴斯德毕赤酵母的基因表达系统研究进展[J]. 生物化学与生物物理进展, 2000, 27(2): 151-154. DOI: 10.3321/j.issn:1000-3282.2000.02.001. [36] VAN DER KLEI I J, YURIMOTO H, SAKAI Y, et al. The significance of peroxisomes in methanol metabolism in methylotrophic yeast[J]. Biochimica et Biophysica Acta-Molecular Cell Research, 2006, 1763(12): 1453-1462. DOI: 10.1016/j.bbamcr.2006.07.016. [37] YURIMOTO H, OKU M, SAKAI Y. Yeast methylotrophy: metabolism,gene regulation and peroxisome homeostasis[J]. International Journal of Microbiology, 2011, 2011: 101298. DOI: 10.1155/2011/101298. [38] AGRAWAL G, SUBRAMANI S. De novo peroxisome biogenesis: evolving concepts and conundrums[J]. Biochimica et Biophysica Acta-Molecular Cell Research, 2016, 1863(5):892-901. DOI: 10.1016/j.bbamcr.2015.09.014. [39] YUAN W, VEENHUIS M, VAN DER KLEI I J. The birth of yeast peroxisomes[J]. Biochimica et Biophysica Acta-Molecular Cell Research, 2016, 1863(5): 902-910. DOI: 10.1016/j.bbamcr.2015.09.008. [40] DUNN W A, Jr, CREGG J M, KIEL J A K W, et al. Pexophagy: the selective autophagy of peroxisomes[J]. Autophagy, 2005, 1(2): 75-83. DOI: 10.4161/auto.1.2.1737. [41] OKU M, SAKAI Y. Pexophagy in yeasts[J]. Biochimica et Biophysica Acta-Molecular Cell Research, 2016, 1863(5): 992-998. DOI: 10.1016/j.bbamcr.2015.09.023. [42] MUKAIYAMA H, BABA M, OSUMI M, et al. Modification of a ubiquitin-like protein Paz2 conducted macropexophagy through formation of a novel membrane structure[J]. Molecular Biology of the Cell, 2004, 15(1): 58-70. DOI: 10.1091/mbc.e03-05-0340. [43] CHIANG H L, SCHEKMAN R, HAMAMOTO S. Selective uptake of cytosolic, peroxisomal, and plasma membrane proteins into the yeast lysosome for degradation[J]. Journal of Biological Chemistry, 1996, 271(17): 9934-9941. DOI: 10.1074/jbc.271.17.9934. [44] TIAN L, FU J P, WU M, et al. Evaluation of gallic acid on membrane damage of Yersinia enterocolitica and its application as a food preservative in pork[J]. International Journal of Food Microbiology, 2022, 374: 109720. DOI: 10.1016/j.ijfoodmicro.2022.109720. [45] TIAN L, WANG X Y, ZHANG D, et al. Evaluation of the membrane damage mechanism of protocatechualdehyde against Yersinia enterocolitica and simulation of growth inhibition in pork[J]. Food Chemistry, 2021, 363: 130340. DOI: 10.1016/j.foodchem.2021.130340. [46] YANG S Q, TIAN L, WANG X Y, et al. Metabolomics analysis and membrane damage measurement reveal the antibacterial mechanism of lipoic acid against Yersinia enterocolitica[J]. Food & Function, 2022, 13(22): 11476-11488. DOI: 10.1039/D2FO01306A. [47] PICHLER H, EMMERSTORFER-AUGUSTIN A. Modification of membrane lipid compositions in single-celled organisms-from basics to applications[J]. Methods, 2018, 147: 50-65. DOI: 10.1016/j.ymeth.2018.06.009. [48] WRIESSNEGGER T, LEITNER E, BELEGRATIS M R, et al. Lipid analysis of mitochondrial membranes from the yeast Pichia pastoris[J]. Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids, 2009,1791(3): 166-172. DOI: 10.1016/j.bbalip.2008.12.017. [49] WRIESSNEGGER T, GÜBITZ G, LEITNER E, et al. Lipid composition of peroxisomes from the yeast Pichia pastoris grown on different carbon sources[J]. Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids, 2007, 1771(4): 455-461. DOI: 10.1016/j.bbalip.2007.01.004. [50] KLUG L, TARAZONA P, GRUBER C, et al. The lipidome and proteome of microsomes from the methylotrophic yeast Pichia pastoris[J]. Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids, 2014, 1841(2): 215-226. DOI: 10.1016/j.bbalip.2013.11.005. [51] WEI D, LI J, SHEN M D, et al. Cellular production of n-3 PUFAs and reduction of n-6-to-n-3 ratios in the pancreatic beta-cells and islets enhance insulin secretion and confer protection against cytokine-induced cell death[J]. Diabetes, 2010, 59(2): 471-478. DOI: 10.2337/db09-0284. [52] ZINSER E, PALTAU F, DAUM G. Sterol composition of yeast organelle membranes and subcellular distribution of enzymes involved in sterol metabolism[J]. Journal of Bacteriology, 1993, 175(10): 2853-2858. DOI: 10.1128/jb.175.10.2853-2858.1993. [53] MICHAELSON L V, ZÄUNER S, MARKHAM J E, et al. Functional characterization of a higher plant sphingolipid Delta4-desaturase: defining the role of sphingosine and sphingosine-1-phosphate in Arabidopsis[J]. Plant Physiology, 2009, 149(1): 487-498. DOI: 10.1104/pp.108.129411. [54] KOCH B, SCHMIDT C, DAUM G. Storage lipids of yeasts: a survey of nonpolar lipid metabolism in Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica[J]. FEMS Microbiology Reviews, 2014, 38(5): 892-915. DOI: 10.1111/1574-6976.12069. [55] TIAN L, WU M, LI H, et al. Transcriptome analysis of Micrococcus luteus in response to treatment with protocatechuic acid[J]. Journal of Applied Microbiology, 2022, 133(5): 3139-3149. DOI: 10.1111/jam.15743. [56] WU M, TIAN L, FU J P, et al. Antibacterial mechanism of Protocatechuic acid against Yersinia enterocolitica and its application in pork[J]. Food Control, 2022, 133(Part A): 108573. DOI: 10.1016/j.foodcont.2021.108573. [57] KOCK C, DUFRÊNE Y F, HEINISCH J J. Up against the wall: is yeast cell wall integrity ensured by mechanosensing in plasma membrane microdomains?[J]. Applied and Environmental Microbiology, 2015, 81(3): 806-811. DOI: 10.1128/AEM.03273-14. [58] OHSAWA S, YURIMOTO H, SAKAI Y. Novel function of Wsc proteins as a methanol-sensing machinery in the yeast Pichia pastoris[J]. Molecular Microbiology, 2017, 104(2): 349-363. DOI: 10.1111/mmi.13631. [59] COSANO I C, MARTÍN H, FLÁNDEZ M, et al. Pim1, a MAP kinase involved in cell wall integrity in Pichia pastoris[J]. Molecular Genetics and Genomics, 2001, 265(4): 604-614. DOI: 10.1007/s004380100452. [60] ZHANG C B, MA Y, MIAO H B, et al. Transcriptomic analysis of Pichia pastoris (Komagataella phaffii) GS115 during heterologous protein production using a high-cell-density fed-batch cultivation strategy[J]. Frontiers in Microbiology, 2020, 11: 463. DOI: 10.3389/fmicb.2020.00463. [61] BRADY J R, WHITTAKER C A, TAN M C, et al. Comparative genome-scale analysis of Pichia pastoris variants informs selection of an optimal base strain[J]. Biotechnology and Bioengineering, 2020, 117(2): 543-555. DOI: 10.1002/bit.27209. [62] LARSEN S, WEAVER J, DE SA CAMPOS K, et al. Mutant strains of Pichia pastoris with enhanced secretion of recombinant proteins[J]. Biotechnology Letters, 2013, 35(11): 1925-1935. DOI: 10.1007/s10529-013-1290-7. [63] 彭毅, 杨希才, 康良仪. 影响甲醇酵母外源蛋白表达的因素[J]. 生物技术通报, 2000, 16(4): 33-36. DOI: 10.3969/j.issn.1002-5464.2000.04.0D7. [64] Invitrogen. Pichia Expression Kit[Z]. Carlsbad, CA: Invitrogen Corporation, 2014. [65] CREGG J M, TSCHOPP J F, STILLMAN C, et al. High-level expression and efficient assembly of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris[J]. Bio/Technology, 1987, 5(5): 479-485. DOI: 10.1038/nbt0587-479. [66] SREEKRISHNA K, NELLES L, POTENZ R, et al. High-level expression, purification, and characterization of recombinant human tumor necrosis factor synthesized in the methylotrophic yeast Pichia pastoris[J]. Biochemistry, 1989, 28(9): 4117-4125. DOI: 10.1021/bi00435a074. [67] SIEGEL R S, BUCKHOLZ R G, THILL G P, et al. Production of epider growth factor in methylotrophic yeast cells:WO9010697[P]. 1990-03-15. [68] MATTEWS B J, VOSSHALL L B. How to turn an organism into a model organism in 10 ‘easy’ steps[J]. The Journal of Experimental Biology, 2020, 223(Pt Suppl 1): jeb218198. DOI: 10.1242/jeb.218198. [69] DICARLO J E, CONLEY A J, PENTTILÄ M, et al. Yeast oligo-mediated genome engineering (YOGE)[J]. ACS Synthetic Biology, 2013, 2(12): 741-749. DOI: 10.1021/sb400117c. [70] GIAEVER G, NISLOW C. The yeast deletion collection: a decade of functional genomics[J]. Genetics, 2014, 197(2): 451-465. DOI: 10.1534/genetics.114.161620. [71] BERNAUER L, RADKOHL A, GABRIELA L, et al. Komagataella phaffii as emerging model organism in fundamental research[J]. Frontiers in Microbiology, 2021, 11: 607028. DOI: 10.3389/fmicb.2020.607028. |
[1] | 李雅园, 王光幸, 李新闻, 郭振华, 关桂君. 青鳉nup58的表达及其在性别分化中的潜在作用[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 168-179. |
[2] | 邹镭, 邢兵, 杨柳. 利用CRISPR/Cas9系统构建LMNA基因突变AC16人心肌细胞系[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 163-170. |
[3] | 周晶, 李银玲, 陈俏媛, 林万华. 条件敲除Sdr9c7基因小鼠的构建及表型研究[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 147-153. |
[4] | 蒋骄云, 冯龙, 曲宪成, 田文斐. 黄鳝性逆转相关基因F4的克隆和表达分析[J]. 广西师范大学学报(自然科学版), 2013, 31(4): 121-127. |
[5] | 赵志常, 张建军, 张皖蓉, 刘震, 李旭锋, 杨毅. 拟南芥DnaJ蛋白的过量表达对细菌耐盐性的影响[J]. 广西师范大学学报(自然科学版), 2010, 28(1): 54-57. |
[6] | 陈敦学, 石常友, 宾石玉, 褚武英, 唐万林, 林谦. 哺乳藏猪肠道CAT1、EAAC1和Pept1 mRNA的发育性表达分析[J]. 广西师范大学学报(自然科学版), 2010, 28(1): 63-67. |
[7] | 赵发兰, 宾石玉, 陈敦学, 农小献, 刘希良. 斑鳜肌球蛋白轻链1基因cDNA的克隆及其分析[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 99-103. |
[8] | 吴雅婕, 杨跃飞, 范博钧, 徐磊, 鞠辉明. 利用改良的CRISPR/Cas9系统构建猪PPARD载体及效率检测[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 132-138. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |