|
广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (2): 83-94.doi: 10.16088/j.issn.1001-6600.2024051302
刘玉娜1,2, 马双宝1,2*
LIU Yuna1,2, MA Shuangbao1,2*
摘要: 为应对织物疵点目标检测中背景纹理复杂以及硬件资源有限问题,本文提出一种基于改进YOLOv8n的轻量化织物疵点检测算法(GSL-YOLOv8n)。首先,为减少YOLOv8n模型参数量与网络结构复杂度,结合Ghost思想构建C2fGhost模块,并用Ghost卷积层替换YOLOv8n网络结构的普通卷积(Conv);其次,在主干网络末端嵌入无参注意力机制SimAM,去除冗余背景,增强小目标语义信息和全局信息,增强网络特征提取能力;最后,设计轻量化共享卷积检测头LSCDH,运用Scale层对特征进行缩放,在保证模型轻量化的同时尽可能减少精度损失。改进后的算法GSL-YOLOv8n相比原YOLOv8n模型平均精度提升0.60%,达到98.29%,检测速度FPS基本保持不变,模型体积、计算量和参数量分别减少66.7%、58.0%和67.4%,满足纺织工业生产对织物疵点检测的应用要求。
中图分类号: TP391.41
[1] JEYARAJ P R, NADAR E R S. Effective textile quality processing and an accurate inspection system using the advanced deep learning technique[J]. Textile Research Journal, 2020, 90(9/10): 971-980. DOI: 10.1177/0040517519884124. [2] FOUDA Y M. Integral images-based approach for fabric defect detection[J]. Optics & Laser Technology, 2022, 147: 107608. DOI: 10.1016/j.optlastec.2021.107608. [3] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. DOI: 10.1109/TPAMI.2016.2577031. [4] DIWAN T, ANIRUDH G, TEMBHURNE J V. Object detection using YOLO: challenges, architectural successors, datasets and applications[J]. Multimedia Tools and Applications, 2023, 82(6): 9243-9275. DOI: 10.1007/s11042-022-13644-y. [5] JIA D Y, ZHOU J L, ZHANG C W. Detection of cervical cells based on improved SSD network[J]. Multimedia Tools and Applications, 2022, 81(10): 13371-13387. DOI: 10.1007/s11042-021-11015-7. [6] 孙旋,高小淋,曹高帅.基于改进Faster R-CNN的织物疵点检测算法[J].毛纺科技,2022,50(12):77-84.DOI: 10.19333/j.mfkj.20220305708. [7] 高敏,邹阳林,曹新旺.基于改进YOLOv5模型的织物疵点检测[J].现代纺织技术,2023,31(4):155-163.DOI: 10.19398/j.att.202209017. [8] 朱磊,王倩倩,姚丽娜,等.改进YOLOv5的织物缺陷检测方法[J].计算机工程与应用,2024,60(20):302-311.DOI: 10.3778/j.issn.1002-8331.2306-0142. [9] FAN H D, ZHU D Q, LI Y H. An improved yolov5 marine biological object detection algorithm[C] // 2021 2nd International Conference on Artificial Intelligence and Computer Engineering (ICAICE). Los Alamitos, CA: IEEE Computer Society, 2021: 29-34. DOI: 10.1109/ICAICE54393.2021.00014. [10] 黄汉林,景军锋,张缓缓,等.基于MF-SSD网络的织物疵点检测[J].棉纺织技术,2020,48(12):11-16.DOI: 10.3969/j.issn.1001-7415.2020.12.003. [11] 李洋,李敏,黄政,等.基于YOLOv5n的轻量级织物疵点检测算法[J].毛纺科技,2024,52(5):87-97.DOI: 10.19333/j.mfkj.20231005811. [12] 赵英宝,刘姝含,黄丽敏,等.基于轻量化YOLOv7的织物疵点检测算法研究[J].棉纺织技术,2024,52(11):53-61. [13] 赵洋,刘雪枫,赵锦程,等.面向嵌入式设备部署的轻量化织物瑕疵检测算法[J].毛纺科技,2024,52(7):91-99.DOI: 10.19333/j.mfkj.20231108009. [14] 涂智荣,凌海英,李帼,等.基于改进YOLOv7-Tiny的轻量化百香果检测方法[J].广西师范大学学报(自然科学版),2024,42(5):79-90.DOI: 10.16088/j.issn.1001-6600.2023120303. [15] 王小荣,许燕,周建平,等.基于改进YOLOv7的复杂环境下红花采摘识别[J].农业工程学报,2023,39(6):169-176.DOI: 10.11975/j.issn.1002-6819.202211164. [16] LI X, WANG W H, WU L J, et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection[C] // Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2020: 21002-21012. [17] HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C] // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Los Alamitos, CA: IEEE Computer Society, 2020: 1577-1586. DOI: 10.1109/CVPR42600.2020.00165. [18] YANG L X, ZHANG R Y, LI L D, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks[C] // Proceedings of the 38th International Conference on Machine Learning. New York: PMLR, 2021: 11863-11874. [19] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C] // Computer Vision-ECCV 2018. Cham: Springer, 2018: 3-19. DOI: 10.1007/978-3-030-01234-2_1. [20] YI D W, AHMEDOV H B, JIANG S Y, et al. Coordinate-aware mask R-CNN with group normalization: a underwater marine animal instance segmentation framework[J]. Neurocomputing, 2024, 583: 127488. DOI: 10.1016/j.neucom.2024.127488. [21] XIA Z F, PAN X R, SONG S J, et al. Vision transformer with deformable attention[C] // 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2022: 4784-4793. DOI: 10.1109/CVPR52688.2022.00475. [22] ZHU L, WANG X J, KE Z H, et al. BiFormer: vision transformer with Bi-level routing attention[C] // 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2023: 10323-10333. DOI: 10.1109/CVPR52729.2023.00995. [23] WAN D H, LU R S, SHEN S Y, et al. Mixed local channel attention for object detection[J]. Engineering Applications of Artificial Intelligence, 2023, 123(Part C): 106442. DOI: 10.1016/j.engappai.2023.106442. [24] ZHANG X, SONG Y Z, SONG T T, et al. AKConv: convolutional kernel with arbitrary sampled shapes and arbitrary number of parameters[EB/OL]. (2023-11-20)[2024-08-25]. https://arxiv.org/abs/2311.11587v1. DOI: 10.48550/arXiv.2311.11587. [25] MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C] // Computer Vision-ECCV 2018. Cham: Springer, 2018: 122-138. DOI: 10.1007/978-3-030-01264-9_8. [26] HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C] // 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2019: 1314-1324. DOI: 10.1109/ICCV.2019.00140. [27] 徐彦威,李军,董元方,等.YOLO系列目标检测算法综述[J].计算机科学与探索,2024,18(9):2221-2238.DOI: 10.3778/j.issn.1673-9418.2402044. |
[1] | 郭翔羽, 石天怡, 陈燕楠, 南新元, 蔡鑫. 基于YOLO-CDBW模型的列车接触网异物检测研究[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 56-69. |
[2] | 苏春海, 夏海英. 抗噪声双约束网络的面部表情识别[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 70-82. |
[3] | 戴林华, 黎远松, 石睿, 何忠良, 李雷. HSED-YOLO:一种轻量化的带钢表面缺陷检测模型[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 95-106. |
[4] | 余快, 宋宝贵, 邵攀, 余翱. 基于层级尺度交互的U-Net遥感影像建筑物提取方法[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 121-132. |
[5] | 卢家辉, 陈庆锋, 王文广, 余谦, 何乃旭, 韩宗钊. 基于多尺度注意力的器官图像分割方法[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 138-148. |
[6] | 涂智荣, 凌海英, 李帼, 陆声链, 钱婷婷, 陈明. 基于改进YOLOv7-Tiny的轻量化百香果检测方法[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 79-90. |
[7] | 杜帅文, 靳婷. 基于用户行为特征的深度混合推荐算法[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 91-100. |
[8] | 田晟, 胡啸. 基于Transformer模型的车辆轨迹预测[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 47-58. |
[9] | 吕辉, 吕卫峰. 基于改进YOLOv5的眼底出血点检测算法[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 99-107. |
[10] | 王天雨, 袁嘉伟, 齐芮, 李洋. 多类型知识增强的微博立场检测模型[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 79-90. |
[11] | 肖宇庭, 吕晓琪, 谷宇, 刘传强. 基于拆分残差网络的糖尿病视网膜病变分类[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 91-101. |
[12] | 曾亮, 胡谦, 杨腾飞, 谭微微. 基于L-ConvNeXt网络的变电站人员安全操作检测方法[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 102-110. |
[13] | 席凌飞, 伊力哈木·亚尔买买提, 刘雅洁. 基于改进YOLOv5的铝型材表面缺陷检测方法[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 111-119. |
[14] | 宋冠武, 陈知明, 李建军. 基于ResNet-50的级联注意力遥感图像分类[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 80-91. |
[15] | 郭嘉梁, 靳婷. 基于语义增强的多模态情感分析[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 14-25. |
Viewed | ||||||||||||||||||||||||||||||||||
Full text 0
|
|
|||||||||||||||||||||||||||||||||
Abstract 3
|
|
|||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||
Discussed |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |