|
广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (5): 79-90.doi: 10.16088/j.issn.1001-6600.2023120303
涂智荣1, 凌海英1, 李帼1,2, 陆声链1,2*, 钱婷婷3*, 陈明1,2
TU Zhirong1, LING Haiying1, LI Guo1,2, LU Shenglian1,2*, QIAN Tingting3*, CHEN Ming1,2
摘要: 在果园中,准确且快速的果实检测是水果产量预测和自动化采摘等农业智能化应用的关键任务之一。针对目前目标检测模型参数量和计算量大,难以满足嵌入式设备实时性要求的问题,本文提出一种基于改进YOLOv7-Tiny的轻量化检测方法,用于复杂果园环境中百香果的检测。首先,在主干网络中使用全维动态卷积(ODConv),提高主干网络的特征提取能力,使平均精度均值(mAP)提升2个百分点;其次,为了减少颈部网络的参数量和计算量,融合GhostNet网络和MobileOne网络,提出GMConv轻量化模块,使模型参数量下降约30%,计算量下降约20%,FPS提高约50 frame/s。在百香果数据集上的实验结果表明,与YOLOv7-Tiny相比,改进后算法的参数量和计算量分别下降32.1%和25.4%,mAP提升2.6个百分点。在降低计算量和参数量的前提下,改进后算法进一步提高了检测精度,有利于在嵌入式设备中部署。
中图分类号: TP391.41
[1] 龙燕,杨智优,何梦菲. 基于改进YOLOv7的疏果期苹果目标检测方法[J]. 农业工程学报,2023,39(14):191-199. DOI: 10.11975/j.issn.1002-6819.202305069. [2] GAO F F,FANG W T,SUN X M,et al. A novel apple fruit detection and counting methodology based on deep learning and trunk tracking in modern orchard[J]. Computers and Electronics in Agriculture,2022,197:107000. DOI: 10.1016/j.compag.2022.107000. [3] 王立舒,秦铭霞,雷洁雅,等. 基于改进YOLOv4-Tiny的蓝莓成熟度识别方法[J]. 农业工程学报,2021,37(18):170-178. DOI: 10.11975/j.issn.1002-6819.2021.18.020. [4] 吕佳,李帅军,曾梦瑶,等. 基于半监督SPM-YOLOv5的套袋柑橘检测算法[J]. 农业工程学报,2022,38(18):204-211. DOI: 10.11975/j.issn.1002-6819.2022.18.022. [5] LINKER R,COHEN O,NAOR A. Determination of the number of green apples in RGB images recorded in orchards[J].Computers and Electronics in Agriculture,2012,81:45-57. DOI: 10.1016/j.compag.2011.11.007. [6] LECUN Y,BENGIO Y,HINTON G. Deep learning[J]. Nature,2015,521(7553):436-444. DOI: 10.1038/nature14539. [7] 张文龙,南新元. 基于改进YOLOv5的道路车辆跟踪算法[J]. 广西师范大学学报(自然科学版),2022,40(2):49-57. DOI: 10.16088/j.issn.1001-6600.2021081303. [8] 陈文康,陆声链,刘冰浩,等. 基于改进YOLOv4的果园柑橘检测方法研究[J]. 广西师范大学学报(自然科学版),2021,39(5):134-146. DOI: 10.16088/j.issn.1001-6600.2020111404. [9] 郭希岳,李劲松,郑立华,等. 利用Re-YOLOv5和检测区域搜索算法获取大豆植株表型参数[J]. 农业工程学报,2022,38(15):186-194. DOI: 10.11975/j.issn.1002-6819.2022.15.020. [10] 张秀花,静茂凯,袁永伟,等. 基于改进YOLOv3-Tiny的番茄苗分级检测[J]. 农业工程学报,2022,38(1):221-229. DOI: 10.11975/j.issn.1002-6819.2022.01.025. [11] TU S Q,PANG J,LIU H F,et al. Passion fruit detection and counting based on multiple scale faster R-CNN using RGB-D images[J]. Precision Agriculture,2020,21(5):1072-1091. DOI: 10.1007/s11119-020-09709-3. [12] SUN J,HE X F,GE X,et al. Detection of key organs in tomato based on deep migration learning in a complex background[J]. Agriculture,2018,8(12):196. DOI: 10.3390/agriculture8120196. [13] 涂淑琴,黄健,林跃庭,等. 基于改进Faster R-CNN的百香果自动检测[J]. 实验室研究与探索,2021,40(11):32-37. DOI: 10.19927/j.cnki.syyt.2021.11.008. [14] 唐熔钗,伍锡如. 基于改进YOLO-V3网络的百香果实时检测[J]. 广西师范大学学报(自然科学版),2020,38(6):32-39. DOI: 10.16088/j.issn.1001-6600.2020.06.004. [15] LU S L,CHEN W K,ZHANG X,et al. Canopy-attention-YOLOv4-based immature/mature apple fruit detection on dense-foliage tree architectures for early crop load estimation[J]. Computers and Electronics in Agriculture,2022,193:106696. DOI: 10.1016/j.compag.2022.106696. [16] REDMON J,FARHADI A. YOLOv3:an incremental improvement[EB/OL]. (2018-04-08)[2023-11-29]. https://arxiv.org/abs/1804.02767. DOI: 10.48550/arXiv.1804.02767. [17] BOCHKOVSKIY A,WANG C Y,LIAO H Y M,et al. YOLOv4:optimal speed and accuracy of object detection[EB/OL].(2020-04-23)[2023-11-29]. https://arxiv.org/abs/2004.10934. DOI: 10.48550/arXiv.2004.10934. [18] GE Z,LIU S T,WANG F,et al. YOLOX:exceeding YOLO series in 2021[EB/OL]. (2021-08-06)[2023-11-29]. https://arxiv.org/abs/2107.08430. DOI: 10.48550/arXiv.2107.08430. [19] WANG C Y,BOCHKOVSKIY A,LIAO H Y M. YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C] // 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos,CA:IEEE Computer Society,2023:7464-7475. DOI: 10.1109/CVPR52729.2023.00721. [20] OU J J,ZHANG R H,LI X M,et al. Research and explainable analysis of a real-time passion fruit detection model based on FSOne-YOLOv7[J]. Agronomy,2023,13(8):1993. DOI: 10.3390/agronomy13081993. [21] 孙俊,吴兆祺,贾忆琳,等. 基于改进YOLOv5s的果园环境葡萄检测[J]. 农业工程学报,2023,39(18):192-200. DOI: 10.11975/j.issn.1002-6819.202306135. [22] JI W,PAN Y,XU B,et al. A real-time apple targets detection method for picking robot based on ShufflenetV2-YOLOX[J]. Agriculture,2022,12(6):856. DOI: 10.3390/agriculture12060856. [23] 罗志聪,李鹏博,宋飞宇,等. 嵌入式设备的轻量化百香果检测模型[J]. 农业机械学报,2022,53(11):262-269,322. DOI: 10.6041/j.issn.1000-1298.2022.11.026. [24] 张日红,区建爽,李小敏,等. 基于改进YOLOv4的轻量化菠萝苗心检测算法[J]. 农业工程学报,2023,39(4):135-143. DOI: 10.11975/j.issn.1002-6819.202210133. [25] PONGENER A,SAGAR V,PAL R K,et al. Physiological and quality changes during postharvest ripening of purple passion fruit (Passiflora edulis Sims)[J]. Fruits,2014,69(1):19-30. DOI: 10.1051/fruits/2013097. [26] LI C,ZHOU A J,YAO A B. Omni-dimensional dynamic convolution[EB/OL]. (2022-09-16)[2023-11-29]. https://arxiv.org/abs/2209.07947. DOI: 10.48550/arXiv.2209.07947. [27] HAN K,WANG Y H,TIAN Q,et al. GhostNet:more features from cheap operations[C] // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos,CA:IEEE Computer Society,2020:1577-1586. DOI: 10.1109/CVPR42600.2020.00165. [28] VASU P K A,GABRIEL J,ZHU J,et al. MobileOne:an improved one millisecond mobile backbone[C] // 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos,CA:IEEE Computer Society,2023:7907-7917. DOI: 10.1109/CVPR52729.2023.00764. [29] MA N N,ZHANG X Y,ZHENG H T,et al. ShuffleNet V2:practical guidelines for efficient CNN architecture design[C] // Computer Vision-ECCV 2018:LNCS Volume 11218. Cham:Springer Nature Switzerland AG,2018:122-138. DOI: 10.1007/978-3-030-01264-9_8. [30] HOWARD A,SANDLER M,CHEN B,et al. Searching for MobileNetV3[C] // 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Los Alamitos,CA:IEEE Computer Society,2019:1314-1324. DOI: 10.1109/ICCV.2019.00140. [31] YANG B,BENDER G,LE Q V,et al. CondConv:conditionally parameterized convolutions for efficient inference[C] //Advances in Neural Information Processing Systems 32 (NeurIPS 2019). Red Hook,NY:Curran Associates Inc.,2019:1307-1318. [32] CHEN Y P,DAI X Y,LIU M C,et al. Dynamic convolution:attention over convolution kernels[C] // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos,CA:IEEE Computer Society,2020:11027-11036. DOI: 10.1109/CVPR42600.2020.01104. [33] LI Y S,CHEN Y P,DAI X Y,et al. Revisiting dynamic convolution via matrix decomposition[EB/OL]. (2021-03-15)[2023-11-29]. https://arxiv.org/abs/2103.08756. DOI: 10.48550/arXiv.2103.08756. |
[1] | 吕辉, 吕卫峰. 基于改进YOLOv5的眼底出血点检测算法[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 99-107. |
[2] | 曾亮, 胡谦, 杨腾飞, 谭微微. 基于L-ConvNeXt网络的变电站人员安全操作检测方法[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 102-110. |
[3] | 黄叶祺, 王明伟, 闫瑞, 雷涛. 基于改进的YOLOv5金刚石线表面质量检测[J]. 广西师范大学学报(自然科学版), 2023, 41(4): 123-134. |
[4] | 陈文康, 陆声链, 刘冰浩, 李帼, 刘晓宇, 陈明. 基于改进YOLOv4的果园柑橘检测方法研究[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 134-146. |
[5] | 唐熔钗, 伍锡如. 基于改进YOLO-V3网络的百香果实时检测[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 32-39. |
[6] | 刘英璇, 伍锡如, 雪刚刚. 基于深度学习的道路交通标志多目标实时检测[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 96-106. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |