广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (5): 72-78.doi: 10.16088/j.issn.1001-6600.2023101701

• 研究论文 • 上一篇    下一篇

PMSM混沌系统无初始状态约束的固定时间有界控制

张锦忠, 韦笃取*   

  1. 广西师范大学 电子与信息工程学院/集成电路学院,广西 桂林 541004
  • 收稿日期:2023-10-17 修回日期:2023-12-06 出版日期:2024-09-25 发布日期:2024-10-11
  • 通讯作者: 韦笃取(1975—),男(壮族),广西贵港人,广西师范大学教授,博士。E-mail:weiduqu@mailbox.gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(62062014);广西自然科学基金(2021JJA170004)

Fixed Time Bounded Control of PMSM Chaotic Systems without Initial State Constraints

ZHANG Jinzhong, WEI Duqu*   

  1. School of Electronics and Information Engineering/School of Integrated Circuits, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2023-10-17 Revised:2023-12-06 Online:2024-09-25 Published:2024-10-11

摘要: 永磁同步电机(PMSM)是一种多变量、耦合性强的非线性系统,在实际运行过程中会出现混沌振荡。为了抑制PMSM系统的混沌,本文设计一种无初始状态约束的固定时间有界控制器。首先根据PMSM系统各个子系统的虚拟误差设计虚拟控制器,通过反步法推导得出控制器具有较高的抗干扰性能和鲁棒性,并证明时变反馈参数能够保证系统在到达有限时间收敛的同时达到渐近稳定,且稳定时间只与规定的边界有关。最后数值仿真通过调整控制系数k使系统能够在不同的初始状态下快速达到稳定,验证了所设计的控制器无论系统的初始状态如何,都能够使系统在2.8 s内达到稳定状态且输出收敛于给定的边界。

关键词: PMSM, 混沌振荡, 混沌控制, 稳定状态

Abstract: Permanent magnet synchronous motor (PMSM) is a multivariable and highly coupled nonlinear system,which is subject to chaotic oscillations during practical operation. In order to suppress the chaos of the PMSM system,a fixed-time bounded controller without initial state constraints is designed,which can make the system reach a stable state within 2.8 s. Firstly,the virtual controller is designed according to the virtual errors of each subsystem of the PMSM system,and the controller is derived by backstepping to have high anti-interference performance and robustness. Secondly, it is proved that the time-varying feedback parameter ensures that the system achieves asymptotic stabilization while arriving at the finite-time convergence,and the stabilization time is only related to the prescribed boundary. Finally,numerical simulations are carried out by adjusting the control coefficients k so that the system can reach stability quickly under different initial states,and it is verified that the designed controller is able to make the system reach asymptotic stability and the output converge to the given boundary regardless of the initial state of the system.

Key words: PMSM, chaotic oscillation, chaotic control, stable state

中图分类号:  TP273;TM341

[1] 陈诚,李世华,田玉平. 永磁同步电机调速系统的自抗扰控制[J]. 电气传动,2005,35(9): 13-16. DOI: 10.3969/j.issn.1001-2095.2005.09.003.
[2] 俞沛宙,杨刚,杨继辉,等. 基于自适应反推的永磁同步电动机转速控制策略[J]. 电气工程学报,2020,15(3): 38-43. DOI: 10.11985/2020.03.005.
[3] 梅春草,许丽娟. 环形电机耦合网络混沌行为的抑制控制[J]. 吉林大学学报(理学版),2022,60(4): 970-976. DOI: 10.13413/j.cnki.jdxblxb.2021309.
[4] 张敬,汤涛,方文华,等. 基于直流电机系统的广义同步混沌化[J]. 动力学与控制学报,2020,18(2): 91-97. DOI: 10.6052/1672-6553-2020-017.
[5] 曹书磊,谢进,丁维高. 永磁同步电机-2R机构多非线性耦合系统动力学分析及混沌控制[J]. 机械传动,2019,43(10): 113-117. DOI: 10.16578/j.issn.1004.2539.2019.10.021.
[6] 孙黎霞,鲁胜,温正赓,等. 永磁同步电机混沌运动机理分析[J]. 电机与控制学报,2019,23(3): 97-104. DOI: 10.15938/j.emc.2019.03.013.
[7] ZIRKOHI M M. Command filtering-based adaptive control for chaotic permanent magnet synchronous motors considering practical considerations[J]. ISA Transactions, 2021, 114: 120-135. DOI: 10.1016/j.isatra.2020.12.036.
[8] LU S K, WANG X C. Observer-based command filtered adaptive neural network tracking control for fractional-order chaotic PMSM[J]. IEEE Access, 2019, 7: 88777-88788. DOI: 10.1109/ACCESS.2019.2926526.
[9] XUE W, ZHANG M, LIU S L, et al. Mechanical analysis and ultimate boundary estimation of the chaotic permanent magnet synchronous motor[J]. Journal of the Franklin Institute, 2019, 356(10): 5378-5394. DOI: 10.1016/j.jfranklin.2019.05.007.
[10] JUNEJO A K, XU W, MU C X, et al. Adaptive speed control of PMSM drive system based a new Sliding-Mode reaching law[J]. IEEE Transactions on Power Electronics, 2020, 35(11): 12110-12121. DOI: 10.1109/TPEL.2020.2986893.
[11] DERAKHSHANNIA M, MOOSAPOUR S S. Disturbance observer-based sliding mode control for consensus tracking of chaotic nonlinear multi-agent systems[J]. Mathematics and Computers in Simulation, 2022, 194: 610-628. DOI: 10.1016/j.matcom.2021.12.017.
[12] 戴磊,魏海峰,李洋洋,等. 基于分岔理论的永磁同步电机有限时间混沌控制[J]. 控制工程,2022,29(1): 27-32. DOI: 10.14107/j.cnki.kzgc.20200206.
[13] WU J, MA R R. Robust finite-time and fixed-time chaos synchronization of PMSMs in noise environment[J]. ISA Transactions, 2022, 119: 65-73. DOI: 10.1016/j.isatra.2021.02.034.
[14] 王聪,张宏立,马萍. 基于有限时间函数投影的电力系统混沌控制[J]. 振动与冲击,2021,40(14): 125-131. DOI: 10.13465/j.cnki.jvs.2021.14.017.
[15] YIN X, SHE J H, LIU Z T, et al. Chaos suppression in speed control for permanent-magnet-synchronous-motor drive system[J]. Journal of the Franklin Institute, 2020, 357(18): 13283-13303. DOI: 10.1016/j.jfranklin.2020.05.007.
[16] 何宏骏,崔岩,孙观. 一个新非线性系统的动力学分析与混沌控制[J]. 吉林大学学报(理学版),2019,57(5): 1224-1230. DOI: 10.13413/j.cnki.jdxblxb.2018147.
[17] DU H B, WEN G H, CHENG Y Y, et al. Design and implementation of bounded finite-time control algorithm for speed regulation of permanent magnet synchronous motor[J]. IEEE Transactions on Industrial Electronics, 2021, 68(3): 2417-2426. DOI: 10.1109/TIE.2020.2973904.
[18] WANG Y Q. Bounded UDE-based robust control for MIMO systems with application to vector control of a PMSM drive[EB/OL].(2023-05-03)[2023-10-15]. https://www.techrxiv.org/doi/full/10.36227/techrxiv.22723444.v1. DOI: 10.36227/techrxiv.22723444.v1.
[19] YUE H X, WANG H Q, WANG Y Y. Adaptive fuzzy fixed-time tracking control for permanent magnet synchronous motor[J]. International Journal of Robust and Nonlinear Control, 2022, 32(5): 3078-3095. DOI: 10.1002/rnc.5922.
[20] FALLAHA C J, SAAD M, KANAAN H Y, et al. Sliding-Mode robot control with exponential reaching law[J]. IEEE Transactions on Industrial Electronics, 2011, 58(2): 600-610. DOI: 10.1109/TIE.2010.2045995.
[21] 杨秀,韦笃取. 基于单状态变量的永磁同步电机混沌跟踪控制[J]. 广西师范大学学报(自然科学版),2023,41(2): 58-66. DOI: 10.16088/j.issn.1001-6600.2022032303.
[22] MOZAYAN S M, SAAD M, VAHEDI H, et al. Sliding mode control of PMSG wind turbine based on enhanced exponential reaching law[J]. IEEE Transactions on Industrial Electronics, 2016, 63(10): 6148-6159. DOI: 10.1109/TIE.2016.2570718.
[23] 胡锦铭,韦笃取. 不同阶次分数阶永磁同步电机的混合投影同步[J]. 广西师范大学学报(自然科学版),2021,39(4): 1-8. DOI: 10.16088/j.issn.1001-6600.2020070603.
[24] WANG Y Q, FENG Y T, ZHANG X G, et al. A new reaching law forantidisturbance sliding-mode control of PMSM speed regulation system[J]. IEEE Transactions on Power Electronics, 2020, 35(4): 4117-4126. DOI: 10.1109/TPEL.2019.2933613.
[25] WANG S B, TAO L, CHEN Q, et al. USDE-based sliding mode control for servo mechanisms with unknown system dynamics[J]. IEEE-ASME Transactions on Mechatronics, 2020, 25(2): 1056-1066. DOI: 10.1109/TMECH.2020.2971541.
[26] TAO L, CHEN Q, NAN Y R, et al. Double hyperbolic reaching law with chattering-free and fast convergence[J]. IEEE Access, 2018, 6: 27717-27725. DOI: 10.1109/ACCESS.2018.2838127.
[27] BHAT S P, BERNSTEIN D S. Finite-time stability of continuous autonomous systems[J]. SIAM Journal on Control and Optimization, 2000, 38(3): 751-766. DOI: 10.1137/S0363012997321358.
[28] PAP E, ŠTRBOJA M. Generalization of the Jensen inequality for pseudo-integral[J]. Information Sciences, 2010, 180(4): 543-548. DOI: 10.1016/j.ins.2009.10.014.
[29] GAO H, WANG Z Y, MA J, et al. Fixed-time bounded control of nonlinear systems without initial-state constraint[J]. International Journal of Control,2024,97(7):1594-1600. DOI: 10.1080/00207179.2023.2218946.
[30] ASLAM CHAUDHRY M, ZUBAIR S M. Generalized incomplete gamma functions with applications[J]. Journal of Computational and Applied Mathematics, 1994, 55(1): 99-124. DOI: 10.1016/0377-0427(94)90187-2.
[31] WEI D Q, LUO X S, WANG B H, et al. Robust adaptive dynamic surface control of chaos in permanent magnet synchronous motor[J]. Physics Letters A, 2007, 363(1/2): 71-77. DOI: 10.1016/j.physleta.2006.10.074.
[1] 马乾然, 韦笃取. 基于线性耦合储备池计算的电机系统混沌预测研究[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 1-7.
[2] 吴雷, 阳丽, 李啟尚, 萧华鹏. 基于小增益定理的同步磁阻电机混沌控制[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 44-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李文博, 董青, 刘超, 张奇. 基于对比学习的儿科问诊对话细粒度意图识别[J]. 广西师范大学学报(自然科学版), 2024, 42(4): 1 -10 .
[2] 高盛祥, 杨元樟, 王琳钦, 莫尚斌, 余正涛, 董凌. 面向域外说话人适应场景的多层级解耦个性化语音合成[J]. 广西师范大学学报(自然科学版), 2024, 42(4): 11 -21 .
[3] 朱格格, 黄安书, 覃盈盈. 基于Web of Science的国际红树林研究发展态势分析[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 1 -12 .
[4] 何静, 冯元柳, 邵靖雯. 基于CiteSpace的多源数据融合研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 13 -27 .
[5] 左钧元, 李欣彤, 曾子涵, 梁超, 蔡进军. 金属有机骨架基催化剂在糠醛选择性加氢反应中的应用研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 28 -38 .
[6] 谭全伟, 薛贵军, 谢文举. 基于VMD和RDC-Informer的短期供热负荷预测模型[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 39 -51 .
[7] 刘畅平, 宋树祥, 蒋品群, 岑明灿. 基于开关电容的差分无源N通道滤波器[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 52 -60 .
[8] 王党树, 孙龙, 董振, 贾如琳, 杨黎康, 吴家驹, 王新霞. 变化负载下全桥LLC谐振变换器参数优化设计[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 61 -71 .
[9] 涂智荣, 凌海英, 李帼, 陆声链, 钱婷婷, 陈明. 基于改进YOLOv7-Tiny的轻量化百香果检测方法[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 79 -90 .
[10] 杜帅文, 靳婷. 基于用户行为特征的深度混合推荐算法[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 91 -100 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发