|
广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (5): 13-27.doi: 10.16088/j.issn.1001-6600.2023101702
何静1,2*, 冯元柳1, 邵靖雯1
HE Jing1,2*, FENG Yuanliu1, SHAO Jingwen1
摘要: 信息的爆炸式增长给多源数据融合研究提供了现实基础,使其在纳入数据范围与应用前景上不断拓展,而人工智能相关技术的发展更为其提供了创新的可能。为梳理多源数据融合研究的历史脉络、发展现状与前沿趋势,本文使用CiteSpace软件,面向中国知网和Web of Science(WOS)数据库中的相关研究,按年发文量、机构共现、作者共现、关键词共现、关键词聚类与突显词,对1992—2022年的文献进行可视化分析。结果表明,近年该主题下的中外研究逐渐走向成熟,在跨学科领域的概念统一和集成方法方面日渐拓展,进入大发展期。中文研究机构和作者网络相对松散,热点研究内容相对聚焦,集中在以数据融合为核心的信息融合、多源异构数据等方面,具有注重交叉性融合、算法优化、跨领域应用等特点。外文研究机构和作者网络相对成熟和稳定,热点研究内容更加广泛,包含多源信息融合、激光雷达数据等方面,具有注重异构整合、深度洞见等特点。未来,相关研究将伴随人工智能技术发展,深入更为多元的高级算法设计和特定场景应用。研究结果可帮助研究人员展开选题和前沿识别,助力研究质量提升与创新发展。
中图分类号: TP391
[1] STEINBERG A N, BOWMAN C L, WHITE F E. Revisions to the JDL data fusion model[C] // Proceedings Volume 3719: Sensor Fusion: Architectures, Algorithms, and Applications III. Bellingham, WA: SPIE, 1999: 430-441. DOI: 10.1117/12.341367. [2] 于佳会, 刘佳静, 郑建明. 多源多维数据融合研究态势: 理论、方法与应用[J]. 情报杂志, 2022, 41(5): 133-138, 207. DOI: 10.3969/j.issn.1002-1965.2022.05.021. [3] 王臻, 刘东, 徐重酉, 等. 新型电力系统多源异构数据融合技术研究现状及展望[J]. 中国电力, 2023, 56(4): 1-15. DOI: 10.11930/j.issn.1004-9649.202211077. [4] 张良培, 何江, 杨倩倩, 等. 数据驱动的多源遥感信息融合研究进展[J]. 测绘学报, 2022, 51(7): 1317-1337. DOI: 10.11947/j.AGCS.2022.20220171. [5] 李瑛, 颜廷龙. 航空大数据的融合及挖掘技术综述[J]. 航空计算技术, 2020, 50(6): 124-128. DOI: 10.3969/j.issn.1671-654X.2020.06.029. [6] 苏小玉, 徐奎奎. 网络安全态势感知中数据融合算法应用综述[J]. 河北省科学院学报, 2020, 37(2): 37-44. DOI: 10.16191/j.cnki.hbkx.2020.02.007. [7] 师春香, 潘旸, 谷军霞, 等. 多源气象数据融合格点实况产品研制进展[J]. 气象学报, 2019, 77(4): 774-783. DOI: 10.11676/qxxb2019.043. [8] 孙群. 多源矢量空间数据融合处理技术研究进展[J]. 测绘学报, 2017, 46(10): 1627-1636. DOI: 10.11947/j.AGCS.2017.20170387. [9] 祁友杰, 王琦. 多源数据融合算法综述[J]. 航天电子对抗, 2017, 33(6): 37-41. DOI: 10.16328/j.htdz8511.2017.06.009. [10] 王声培, 云雅娟. 洛特卡定律、普赖斯定律和我国数学科学文献[J]. 图书情报工作, 1994, 38(3): 21-24. [11] 陶飞, 程颖, 程江峰, 等. 数字孪生车间信息物理融合理论与技术[J]. 计算机集成制造系统, 2017, 23(8): 1603-1611. DOI: 10.13196/j.cims.2017.08.001. [12] 张明华. 基于WLAN的室内定位技术研究[D]. 上海: 上海交通大学, 2009. [13] 李良福, 陈卫东, 高强, 等. 基于深度学习的光电系统智能目标识别[J]. 兵工学报, 2022, 43(增刊1): 162-168. DOI: 10.12382/bgxb.2022.A004. [14] 蒋秉川, 万刚, 许剑, 等. 多源异构数据的大规模地理知识图谱构建[J]. 测绘学报, 2018, 47(8): 1051-1061. DOI: 10.11947/j.AGCS.2018.20180113. [15] 武法提, 黄石华. 基于多源数据融合的共享教育数据模型研究[J]. 电化教育研究, 2020, 41(5): 59-65, 103. DOI: 10.13811/j.cnki.eer.2020.05.009. [16] 王国法, 任怀伟, 赵国瑞, 等. 智能化煤矿数据模型及复杂巨系统耦合技术体系[J]. 煤炭学报, 2022, 47(1): 61-74. DOI: 10.13225/j.cnki.jccs.YG21.1860. [17] 琚春华, 邹江波, 傅小康. 融入区块链技术的大数据征信平台的设计与应用研究[J]. 计算机科学, 2018, 45(11A): 522-526. [18] 涂伟, 曹劲舟, 高琦丽, 等. 融合多源时空大数据感知城市动态[J]. 武汉大学学报(信息科学版), 2020, 45(12): 1875-1883. DOI: 10.13203/j.whugis20200535. [19] 苏跃江, 温惠英, 韦清波, 等. 多源数据融合驱动的居民出行特征分析方法[J]. 交通运输系统工程与信息, 2020, 20(5): 56-63. DOI: 10.16097/j.cnki.1009-6744.2020.05.009. [20] 郭科, 彭继兵, 许强, 等. 滑坡多点数据融合中的多传感器目标跟踪技术应用[J]. 岩土力学, 2006, 27(3): 479-481. DOI: 10.3969/j.issn.1000-7598.2006.03.029. [21] 蓝金辉, 马宝华, 蓝天, 等. D-S证据理论数据融合方法在目标识别中的应用[J]. 清华大学学报(自然科学版), 2001, 41(2): 53-55, 59. DOI: 10.3321/j.issn:1000-0054.2001.02.014. [22] 张永强, 马宪民, 梁兰. 基于RBF的模糊积分多传感器数据融合的刮板输送机电机故障诊断[J]. 西安科技大学学报, 2016, 36(2): 271-274. DOI: 10.13800/j.cnki.xakjdxxb.2016.0219. [23] 杨鹏民. 基于嵌入式Linux与深度视觉的井下多轴机械臂系统设计[J]. 煤炭工程, 2022, 54(12): 90-96. DOI: 10.11799/ce202212017. [24] 马坤, 张永谋, 吴红刚, 等. 基于多传感器数据融合分析的路堑滑坡模型试验研究[J]. 防灾减灾工程学报, 2022, 42(4): 653-663. DOI: 10.13409/j.cnki.jdpme.20201229002. [25] 马立玲, 郭建, 汪首坤, 等. 基于改进CNN-GRU网络的多源传感器故障诊断方法[J]. 北京理工大学学报, 2021, 41(12): 1245-1252. DOI: 10.15918/j.tbit1001-0645.2020.183. [26] YANG L, XU W H, ZHANG X Y, et al.Multi-granulation method for information fusion in multi-source decision information system[J]. International Journal of Approximate Reasoning, 2020, 122: 47-65. DOI: 10.1016/j.ijar.2020.04.003. [27] ANDERSON M C, YANG Y, XUE J, et al. Interoperability of ECOSTRESS and landsat for mapping evapotranspiration time series at sub-field scales[J]. Remote Sensing of Environment, 2021, 252: 112189. DOI: 10.1016/j.rse.2020.112189. [28] CAI B P, LIU Y H, FAN Q, et al.Multi-source information fusion based fault diagnosis of ground-source heat pump using Bayesian network[J]. Applied Energy, 2014, 114: 1-9. DOI: 10.1016/j.apenergy.2013.09.043. [29] LUO R B, LIAO W Z, ZHANG H Y, et al. Classification of cloudy hyperspectral image and LiDAR data based on feature fusion and decision fusion[C] //2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Piscataway, NJ: IEEE Press, 2016: 2518-2521. DOI: 10.1109/IGARSS.2016.7729650. [30] ZHANG Z, YANG M Y, ZHOU M. Multi-source hierarchical conditional random field model for feature fusion of remote sensing images and liDAR data[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2013, XL-1/W1: 389-392. DOI: 10.5194/isprsarchives-XL-1-W1-389-2013. [31] CHEN Z Y, GAO B B, DEVEREUX B. State-of-the-art: DTM generation using airborne LIDAR data[J]. Sensors, 2017, 17(1): 150. DOI: 10.3390/s17010150. [32] XING B Y, ZHU Q M, PAN F, et al. Marker-based multi-sensor fusion indoor localization system for micro air vehicles[J]. Sensors, 2018, 18(6): 1706. DOI: 10.3390/s18061706. [33] XU Y H, DU B, ZHANG L P. Multi-Source remote sensing data classification via fully convolutional networks and post-classification processing[C] //IGARSS 2018: 2018 IEEE International Geoscience and Remote Sensing Symposium. Piscataway, NJ: IEEE Press, 2018: 3852-3855. DOI: 10.1109/IGARSS.2018.8518295. [34] ZHU Y X, LI W, ZHANG M M, et al. Joint feature extraction for multi-source data using similar double-concentrated network[J]. Neurocomputing, 2021, 450: 70-79. DOI: 10.1016/j.neucom.2021.03.088. [35] LIU R W, GUO Y, NIE J T, et al. Intelligent edge-enabled efficient multi-source data fusion for autonomous surface vehicles in maritime internet of things[J]. IEEE Transactions on Green Communications and Networking, 2022, 6(3): 1574-1587. DOI: 10.1109/TGCN.2022.3158004. [36] LIU P Y, PAN X, REN M, et al. Evidence theory fusion method based on variable granulation rough set[C] // 2016 8th International Conference on Information Technology in Medicine and Education (ITME). Piscataway, NJ: IEEE Press, 2016: 534-538. DOI: 10.1109/ITME.2016.0127. [37] LU C Q, WANG S P, WANG X J. A multi-source information fusion fault diagnosis for aviation hydraulic pump based on the new evidence similarity distance[J]. Aerospace Science and Technology, 2017, 71: 392-401. DOI: 10.1016/j.ast.2017.09.040. [38] XIA J, FENG Y Q, LIU L N, et al. An evidential reliability indicator-based fusion rule for dempster-shafer theory and its applications in classification[J]. IEEE Access, 2018, 6: 24912-24924. DOI: 10.1109/ACCESS.2018.2831216. [39] TAO X L, LIU L Y, ZHAO F, et al. Ontology and weighted DS evidence theory-based vulnerability data fusion method[J]. Journal of Universal Computer Science, 2019, 25(3): 203-221. DOI: 10.3217/JUCS-025-03-0203. [40] TANG Y C, WU D D, LIU Z J. A new approach for generation of generalized basic probability assignment in the evidence theory[J]. Pattern Analysis and Applications, 2021, 24(3): 1007-1023. DOI: 10.1007/s10044-021-00966-0. [41] POHL C. Remote sensing image fusion in the context of digital earth[J]. IOP Conference Series: Earth and Environmental Science, 2014, 18(1): 012002. DOI: 10.1088/1755-1315/18/1/012002. [42] BACHOFER F, ESCH T, BALHAR J, et al. The urban thematic exploitation platform-processing,analysing and visualization of heterogeneous data for urban applications[C] // 2019 Joint Urban Remote Sensing Event. Piscataway, NJ: IEEE Press, 2019: 1-3. DOI: 10.1109/JURSE.2019.8809016. [43] LIU R, GREVE K, CUI P Y, et al. Collaborative positioning method via GPS/INS and RS/MO multi-source data fusion in multi-target navigation[J]. Survey Review, 2022, 54(383): 95-105. DOI: 10.1080/00396265.2021.1883962. [44] PARIS C, KOTOWSKA M M, ERASMI S, et al. A novel approach for environmental monitoring based on the integration of multi-temporal multi-source earth observation data and field surveys in a spatio-temporal framework[C] // IGARSS 2022: 2022 IEEE International Geoscience and Remote Sensing Symposium. Piscataway, NJ: IEEE Press, 2022: 5897-5900. DOI: 10.1109/IGARSS46834.2022.9884130. [45] SHAO Z F, GUI C, LI D R, et al.Spatio-temporal-spectral-angular observation model that integrates observations from UAV and mobile mapping vehicle for better urban mapping[J]. Geo-spatial Information Science, 2021, 24(4): 615-629. DOI: 10.1080/10095020.2021.1961567. [46] XU P P, TSENDBAZAR N E, HEROLD M, et al. Improving the characterization of global aquatic land cover types using multi-source earth observation data[J]. Remote Sensing of Environment, 2022, 278: 113103. DOI: 10.1016/j.rse.2022.113103. [47] 王璇, 李春升, 周荫清. 多传感器信息融合技术[J]. 北京航空航天大学学报, 1994, 20(4): 402-406. [48] GUNATILAKA A H, BAERTLEIN B A. Feature-level and decision-level fusion of noncoincidently sampled sensors for land mine detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6): 577-589. DOI: 10.1109/34.927459. [49] 钱伟, 何志祥, 张德银. 基于模糊神经网络的火灾传感器特征参数融合算法[J]. 传感技术学报, 2017, 30(12): 1906-1911. DOI: 10.3969/j.issn.1004-1699.2017.12.021. [50] SUN M, DOU H T, LI Q Z, et al. Quality estimation of deep web data sources for data fusion[J]. Procedia Engineering, 2012, 29: 2347-2354. DOI: 10.1016/j.proeng.2012.01.313. [51] 陈海燕, 甄霞军, 赵涛涛. 一种自适应图像融合数据增强的高原鼠兔目标检测方法[J]. 农业工程学报, 2022, 38(增刊): 170-175. DOI: 10.11975/j.issn.1002-6819.2022.z.019. [52] DECKER K T, BORGHETTI B J. Composite style pixel and point convolution-based deep fusion neural network architecture for the semantic segmentation of hyperspectral and lidar data[J]. Remote Sensing, 2022, 14(9): 2113. DOI: 10.3390/rs14092113. |
[1] | 朱格格, 黄安书, 覃盈盈. 基于Web of Science的国际红树林研究发展态势分析[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 1-12. |
[2] | 翟言豪, 王燕舞, 李强, 李景坤. 基于CiteSpace的三维荧光光谱技术对内陆水体中溶解性有机质研究的进展[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 34-46. |
[3] | 董淑龙, 马姜明, 辛文杰. 景观视觉评价研究进展与趋势——基于CiteSpace的知识图谱分析[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 1-13. |
[4] | 赵珂艺, 张宁宁, 薛洁怡, 李广娈, 李艺, 于方明, 刘可慧. 重金属超富集植物研究CiteSpace可视化分析[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 191-209. |
[5] | 潘海明, 陈庆锋, 邱杰, 何乃旭, 刘春雨, 杜晓敬. 基于卷积推理的多跳知识图谱问答算法[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 102-112. |
[6] | 张小丽, 陈泽柠, 武正军. 蜥蜴与气候变化的研究热点演变分析——基于Web of Science数据库[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 332-341. |
[7] | 李志欣, 苏强. 基于知识辅助的图像描述生成[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 418-432. |
[8] | 童凌晨, 李强, 岳鹏鹏. 基于CiteSpace的喀斯特土壤有机碳研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 22-34. |
[9] | 肖飞, 丁旭升, 王维红. 基于文献计量学分析的好氧颗粒污泥研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(2): 1-14. |
[10] | 官晓金, 赵珂艺, 刘世玲, 李艺, 于方明, 李春明, 刘可慧. 近30年全球锰污染植物修复研究进展——基于CiteSpace的可视化分析[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 44-57. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |