|
广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (5): 332-341.doi: 10.16088/j.issn.1001-6600.2021100911
张小丽1,2, 陈泽柠1,2*, 武正军1,2*
ZHANG Xiaoli1,2, CHEN Zening1,2*, WU Zhengjun1,2*
摘要: 以Web of Science为数据源,应用文献统计分析软件CiteSpace绘制蜥蜴与气候变化研究领域的知识图谱,对该领域的年度发文统计、主要研究力量、合作关系、学科、期刊、研究前沿与知识基础、研究热点与发展趋势进行系统分析。结果表明:1)蜥蜴与气候变化研究领域的发文量不断增加,发展速度迅猛。2)发达国家是蜥蜴与气候变化领域的主要研究力量,美国与澳大利亚发文量最高,占据主要地位;澳大利亚詹姆斯库克大学是主要研究机构;同时,各个国家、机构间的合作不断增强。3)蜥蜴与气候变化研究领域文献涉及多个学科,已有的学科主要涉及生命科学领域。4)当前该领域的7个研究热点分别为体温调节、系统发育与物种进化、生物多样性、脆弱性、评估与模型、保护管理以及气候变化;其中体温调节、系统发育、物种进化与脆弱性方面依旧是国际上该领域的研究热点。
中图分类号:
[1]TODD B, WILLSON J, GIBBONS J W. The global status of reptiles and causes of their decline[M]// SPARLING D W, BISHOP C A, KREST S. Ecotoxicology of Amphibians and Reptiles. 2nd ed. Boca Raton: CRC Press, 2010:47-67. DOI:10.1201/EBK1420064162-c3. [2]蔡波, 王跃招, 陈跃英, 等. 中国爬行纲动物分类厘定[J]. 生物多样性, 2015, 23(3): 365-382. DOI:10.17520/biods.2015037. [3]蔡波, 李家堂, 陈跃英, 等. 通过红色名录评估探讨中国爬行动物受威胁现状及原因[J]. 生物多样性, 2016, 24(5): 578-587. DOI:10.17520/biods.2015354. [4]PEREIRA H M, LEADLEY P W, PROENÇA V, et al. Scenarios for global biodiversity in the 21st century[J]. Science, 2010, 330(6010): 1496-1501. DOI:10.1126/science.1196624. [5]SINERVO B, MÉNDEZ-DE-LA-CRUZ F, MILES D B, et al. Erosion of lizard diversity by climate change and altered thermal niches[J]. Science, 2010, 328(5980): 894-899. DOI:10.1126/science.1184695. [6]GAINSBURY A M. Influence of size, sex, and reproductive status on the thermal biology of endemic Florida scrub lizards[J]. Ecology and Evolution, 2020, 10(23): 13080-13086. DOI:10.1002/ece3.6897. [7]李欣, 李晔, 徐相华. 第三次世界气候大会闭幕[N]. 中国气象报, 2009-09-07(1). [8]CARTER A L, JANZEN F J. Predicting the effects of climate change on incubation in reptiles: methodological advances and new directions[J]. Journal of Experimental Biology, 2021, 224(Pt Suppl 1): jeb.236018. DOI:10.1242/jeb.236018. [9]CZAJA R A, SCHOLZ A L, FIGUERAS M P, et al. The role of nest depth and site choice in mitigating the effects of climate change on an oviparous reptile[J]. Diversity, 2020, 12(4): 151. DOI:10.3390/d12040151. [10]NEDERHOF A J. Bibliometric monitoring of research performance in the social sciences and the humanities: A review[J]. Scientometrics, 2006, 66(1): 81-100. DOI:10.1007/s11192-006-0007-2. [11]钟赛香, 曲波, 苏香燕, 等. 从《地理学报》看中国地理学研究的特点与趋势:基于文献计量方法[J]. 地理学报, 2014, 69(8): 1077-1092. DOI:10.11821/dlxb201408005. [12]FERNANDES C H, MEIRELLES L M, RADUAN NETO J, et al. Characteristics of global publications about wrist arthroscopy: a bibliometric analysis[J]. Hand Surgery, 2012, 17(3): 311-315. DOI:10.1142/S0218810412500232. [13]张玲玲, 巩杰, 张影. 基于文献计量分析的生态系统服务研究现状及热点[J]. 生态学报, 2016, 36(18): 5967-5977. DOI:10.5846/stxb201504060688. [14]崔峰, 尚久杨. 中国农业文化遗产研究的文献计量与知识图谱分析:基于中国知网(CNKI)和Web of Science数据库[J]. 中国生态农业学报, 2020, 28(9): 1294-1304. DOI:10.13930/j.cnki.cjea.200370. [15]巩杰, 燕玲玲, 徐彩仙, 等. 近30年来中美生态系统服务研究热点对比分析:基于文献计量研究[J]. 生态学报, 2020, 40(10): 3537-3547. DOI:10.5846/stxb201904220811. [16]陈春, 罗晓燕, 刘明. 哺乳动物对气候变化响应的研究热点演变分析:基于动物学记录(Zoology Record)的文献计量分析[J]. 兽类学报, 2017, 37(1): 109-114. DOI:10.16829/j.slxb.201701010. [17]王贤文, 刘则渊, 栾春娟, 等. SSCI数据库中的人文地理学期刊分析[J]. 地理学报, 2009, 64(2): 243-252. DOI:10.11821/xb200902011. [18]侯国林, 黄震方, 台运红, 等. 旅游与气候变化研究进展[J]. 生态学报, 2015, 35(9): 2837-2847. DOI:10.5846/stxb201309062215. [19]CHEN C M. CiteSpace Π: Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3): 359-377. DOI:10.1002/asi.20317. [20]陈悦, 陈超美, 胡志刚. 引文空间分析原理与应用CiteSpace实用指南[M]. 北京: 科学出版社, 2014. [21]吴同亮, 王玉军, 陈怀满, 等. 基于文献计量学分析2016年环境土壤学研究热点[J]. 农业环境科学学报, 2017, 36(2): 205-215. DOI:10.11654/jaes.2017-0128. [22]赵建保. CiteSpace可视化流程与分析范式研究[J]. 知识经济, 2014(16): 105-107. DOI:10.15880/j.cnki.zsjj.2014.16.208. [23]CASTELLI M A, GEORGES A, CHERRYH C, et al. Evolving thermal thresholds explain the distribution of temperature sex reversal in an Australian dragon lizard[J]. Diversity and Distributions, 2021, 27(3): 427-438. DOI:10.1111/ddi.13203. [24]OBREGÓN R L, SCOLARO J A, IBARGÜENGOYTÍA N R, et al. Thermal biology and locomotor performance in Phymaturus calcogaster: are Patagonian lizards vulnerable to climate change?[J]. Integrative Zoology, 2021, 16(1): 53-66. DOI:10.1111/1749-4877.12481. [25]MEGÍA-PALMA R, JIMÉNEZ-ROBLES O, HERNÖNDEZ-AGÜERO J A, et al. Plasticity of haemoglobin concentration and thermoregulation in a mountain lizard[J]. Journal of Thermal Biology, 2020, 92: 102656. DOI:10.1016/j.jtherbio.2020.102656. [26]NORDBERG E J, SCHWARZKOPF L. Heat seekers: a tropical nocturnal lizard uses behavioral thermoregulation to exploit rare microclimates at night[J]. Journal of Thermal Biology, 2019, 82: 107-114. DOI:10.1016/j.jtherbio.2019.03.018. [27]孙清琳, 徐骁骁, 刘鹏, 等. 环境温度对东北林蛙(Rana dybowskii)体温的影响[J]. 野生动物学报, 2016, 37(3): 266-270. DOI:10.19711/j.cnki.issn2310-1490.2016.03.016. [28]许雪峰, 陈雪君, 计翔. 雄性山地麻蜥选择体温、热耐受性及温度对食物同化和运动表现的影响[J]. 动物学研究, 2001, 22(6): 443-448. [29]STANTON-JONES W K, PARUSNATH S, ALEXANDER G J. The impact of posture and basking orientation on thermoregulation in the Sungazer (Smaug giganteus)[J]. Journal of Thermal Biology, 2018, 75: 45-53. DOI:10.1016/j.jtherbio.2018.05.005. [30]DZIALOWSKI E M, O’CONNOR M P. Physiological control of warming and cooling during simulated shuttling and basking in lizards[J]. Physiological and Biochemical Zoology, 2001, 74(5): 679-693. DOI:10.1086/322929. [31]KREGER K M, SHABAN B, WAPSTRA E, et al. Phylogeographic parallelism: Concordant patterns in closely related species illuminate underlying mechanisms in the historically glaciated Tasmanian landscape[J]. Journal of Biogeography, 2020, 47(8): 1674-1686. DOI:10.1111/jbi.13831. [32]BARROWS C W, SWEET L C, RANGITSCH J, et al. Responding to increased aridity: Evidence for range shifts in lizards across a 50-year time span in Joshua Tree National Park[J]. Biological Conservation, 2020, 248: 108667. DOI:10.1016/j.biocon.2020.108667. [33]IVEY K N, CORNWALL M, CROWELL H, et al. Thermal ecology of the federally endangered blunt-nosed leopard lizard (Gambelia sila)[J]. Conservation Physiology, 2020, 8(1): coaa014. DOI:10.1093/conphys/coaa014. [34]MILES D B. Can morphology predict the conservation status of Iguanian lizards?[J]. Integrative and Comparative Biology, 2020, 60(2): 535-548. DOI:10.1093/icb/icaa074. [35]HAN X Z, HAO X, WANG Y, et al. Experimental warming induces oxidative stress and immunosuppression in a viviparous lizard, Eremias multiocellata[J]. Journal of Thermal Biology, 2020, 90: 102595. DOI:10.1016/j.jtherbio.2020.102595. [36]VAN SCHINGEN M, DUC LE M, THI NGO H, et al. Is there more than one Crocodile Lizard? An integrative taxonomic approach reveals vietnamese and Chinese Shinisaurus crocodilurus represent separate conservation and taxonomic units[J]. Der Zoologische Garten, 2016, 85(5): 240-260. DOI:10.1016/j.zoolgart.2016.06.001. [37]DONIHUE C M, KOWALESKI A M, LOSOS J B, et al. Hurricane effects on Neotropical lizards span geographic and phylogenetic scales[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(19): 10429-10434. DOI:10.1073/pnas.2000801117. [38]MARSHAKOVA I. System of document connections based on references[J]. Nauchno-tekhnicheskaya Informatsiya Seriya 2-Informatsionnye Protsessy I Sistemy, 1973(6): 3-8. [39]JANZEN F J, MORJAN C L. Repeatability of microenvironment-specific nesting behaviour in a turtle with environmental sex determination[J]. Animal Behaviour, 2001, 62(1): 73-82. DOI:10.1006/anbe.2000.1732. [40]HUEY R B, KEARNEY M R, KROCKENBERGER A, et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation[J]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 2012, 367(1596): 1665-1679. DOI:10.1098/rstb.2012.0005. [41]DEUTSCH C A, TEWKSBURY J J, HUEY R B, et al. Impacts of climate warming on terrestrial ectotherms across latitude[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(18): 6668-6672. DOI:10.1073/pnas.0709472105. [42]KEARNEY M, SHINE R, PORTER W P. The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(10): 3835-3840. DOI:10.1073/pnas.0808913106. [43]ANGILLETTA M J, Jr. Thermal adaptation: a theoretical and empirical synthesis[M]. Oxford, UK: Oxford University Press, 2009. DOI:10.1093/acprof:oso/9780198570875.001.1. [44]SEARS M W, ANGILLETTA M J, Jr. Costs and benefits of thermoregulation revisited: both the heterogeneity and spatial structure of temperature drive energetic costs[J]. The American Naturalist, 2015, 185(4): E94-E102. DOI:10.1086/680008. |
[1] | 朱婧, 刘鼎, 王珊, 黄祚水, 梁建宏. 土壤养分及其化学计量特征对微生物碳利用效率的影响机制[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 376-387. |
[2] | 童凌晨, 李强, 岳鹏鹏. 基于CiteSpace的喀斯特土壤有机碳研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 22-34. |
[3] | 陈超, 徐正会, 张新民, 郭宁妍, 刘霞, 钱怡顺, 祁彪. 四川大凉山中部蚂蚁物种多样性研究[J]. 广西师范大学学报(自然科学版), 2022, 40(2): 218-230. |
[4] | 李城恩, 潘晓映, 王美涵, 施建华. 基于区间型数据计量的我国粮食产量研究[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 206-215. |
[5] | 官晓金, 赵珂艺, 刘世玲, 李艺, 于方明, 李春明, 刘可慧. 近30年全球锰污染植物修复研究进展——基于CiteSpace的可视化分析[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 44-57. |
[6] | 李建鸿, 蒙歆媛, 翟禄新, 王月. 1951—2006年广西极端连续降水的时空变化分析[J]. 广西师范大学学报(自然科学版), 2016, 34(1): 187-196. |
[7] | 余丽江, 陆舟, 舒晓莲, 蒋爱伍, 杨岗, 余桂东, 李肇天, 周放. 广西西南石灰岩地区的鸟类多样性[J]. 广西师范大学学报(自然科学版), 2015, 33(2): 103-108. |
[8] | 朱瑜, 蔡德所, 周解, 韩耀全. 漓江鱼类生态类型及生物多样性变化情况[J]. 广西师范大学学报(自然科学版), 2012, 30(4): 146-151. |
[9] | 张永祥, 蔡德所, 易燃. 桂林市青狮潭水库消落带生态脆弱性及其影响因子[J]. 广西师范大学学报(自然科学版), 2012, 30(4): 156-160. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |