|
广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (5): 342-353.doi: 10.16088/j.issn.1001-6600.2022012902
陆相宜1,2, 边迅1,2*, 邓维安1,2
LU Xiangyi1,2, BIAN Xun1,2*, DENG Weian1,2
摘要: 形态测量学是生物形态定量研究的重要部分,广泛应用于分类鉴定、系统发育、形态变异研究。本文阐述几何形态测量学的分析方法与流程,即标点法与轮廓线法、薄板样条分析与傅里叶分析、主成分分析和系统发育主成分分析、聚类分析、判别分析及模块集成分析,并总结几何形态测量学常用分析软件及其主要用途,同时介绍几何形态测量学在直翅目中的应用,以期为直翅目昆虫研究提供新思路。
中图分类号:
[1]白明, 杨星科. 三维几何形态学概述及其在昆虫学中的应用[J]. 昆虫学报, 2014, 57(9): 1105-1111. DOI: 10.16380/j.kcxb.2014.09.005. [2]BALTANÖS Ö, DANIELOPOL D L. Geometric morphometrics and its use in ostracod research: a short guide[J]. Joannea Geol Paläont, 2011, 11: 235-272. [3]JAMES ROHLF F, MARCUS L F. A revolution morphometrics[J]. Trends in Ecology and Evolution, 1993, 8(4): 129-132. DOI: 10.1016/0169-5347(93)90024-J. [4]SLICE D E. Landmark coordinates aligned byprocrustes analysis do not lie in Kendall’s shape space[J]. Systematic Biology, 2001, 50(1): 141-149. http://www.jstor.org/stable/3070962. [5]黄海燕, 陈媛, 周善义. 光亮黑蚁与亮腹黑褐蚁(膜翅目: 蚁科)的形态测量学分析[J]. 广西师范大学学报(自然科学版), 2015, 33(2): 96-102. DOI: 10.16088/j.issn.1001-6600.2015.02.015. [6]GRINANG J, DAS I, NG P K L. Geometric morphometric analysis in female freshwater crabs of Sarawak (Borneo) permits addressing taxonomy-related problems[J]. PeerJ, 2019, 7: e6205. DOI: 10.7717/peerj.6205. [7]SANTOSO M A D, JULIANDI B, RAFFIUDIN R. Honey bees species differentiation using geometric morphometric on wing venations[J]. IOP Conference Series: Earth and Environmental Science, 2018, 197: 012015. DOI: 10.1088/1755-1315/197/1/012015. [8]OLIVEIRA-CHRISTE R, MARRELLI M T. Using geometric morphometric analysis of wings to identify mosquito species from the subgenus Microculex (Diptera: Culicidae)[J]. Journal of Vector Ecology, 2021, 46(2): 221-225. DOI: 10.52707/1081-1710-46.2.221. [9]BUSTAMANTE T, BAISER B, ELLIS J D. Comparing classical and geometric morphometric methods to discriminate between the South African honey bee subspecies Apis mellifera scutellata and Apis mellifera capensis (Hymenoptera: Apidae)[J]. Apidologie, 2020, 51(1): 123-136. DOI: 10.1007/s13592-019-00651-6. [10]TRALLERO L, FARRÉ M, PHILLIPS R A, et al. Geometric morphometrics reveal interspecific and sexual differences in bill morphology in four sympatric planktivorous petrels[J]. Journal of Zoology, 2019, 307(3): 167-177. DOI: 10.1111/jzo.12631. [11]BALAZADEH K, LITVAK M K. Using geometric morphometrics for sex determination on adult shortnose sturgeon (Acipenser brevirostrum)[J]. Aquaculture, 2018, 487: 89-96. DOI: 10.1016/j.aquaculture.2017.12.047. [12]DALY H V. Insect morphometrics[J]. Annual Review of Entomology, 1985, 30: 415-438. DOI: 10.1146/annurev.en.30.010185.002215. [13]白明, 杨星科. 几何形态测量法在生物形态学研究中的应用[J]. 昆虫知识, 2007, 44(1): 143-147. DOI: 10.3969/j.issn.0452-8255.2007.01.035. [14]SHEETS H D.IMP-Integrated morphometrics package[EB/OL].[2021-06-04]. http://www2.canisius.edu/~sheets/morphsoft.html. [15]OLSEN A M, WESTESTNEAT M W.StereoMorph: an R package for the collection of 3D landmarks and curves using a stereo camera set-up[J]. Methods in Ecology and Evolution, 2015, 6(3): 351-356. DOI: 10.1111/2041-210X.12326. [16]SCHUNKE A C, BROMILEY P A, TAUTZ D, et al. TINA manual landmarking tool: software for the precise digitization of 3D landmarks[J]. Frontiers in Zoology, 2012, 9(1): 6. DOI: 10.1186/1742-9994-9-6. [17]ADAMS D C, OTÖROLA-CASTILLO E.Geomorph: an R package for the collection and analysis of geometric morphometric shape data[J]. Methods in Ecology and Evolution, 2013, 4(4): 393-399. DOI: 10.1111/2041-210X.12035. [18]BAI M, LI J, WANG W C, et al. A web based tool to merge geometric morphometric data from multiple characters[J]. Zoological Systematics, 2017, 42(1): 34-45. DOI: 10.11865/zs.201703. [19]ROHLF F J, SLICE D. Extensions of the procrustes method for the optimal superimposition of landmarks[J]. Systematic Biology, 1990, 39(1): 40-59. DOI: 10.2307/2992207. [20]杨红珍, 蔡小娜, 李湘涛, 等. 几何形态计量学在昆虫自动鉴定中的应用与展望[J]. 四川动物, 2013, 32(3): 464-469. DOI: 10.3969/j.issn.1000-7083.2013.03.030. [21]BOOKSTEIN F L. Morphometric tools for landmark data: geometry and biology[M]. Cambridge: Cambridge University Press, 1992. [22]史宇坤. 形态测量学(Morphometrics)常用方法及其在微体古生物学中的应用[J]. 微体古生物学报, 2017, 34(2): 179-191. DOI: 10.16087/j.cnki.1000-0674.2017.02.006. [23]姜晓东, 成永旭, 潘建林, 等. 中国长江与荷兰野生中华绒螯蟹的头胸甲形态特征比较[J]. 淡水渔业, 2020, 50(1): 38-43. DOI: 10.13721/j.cnki.dsyy.2020.01.006. [24]ZELDITCH M L, SWIDERSKI D L, SHEETS H D, et al. Geometric morphometrics for biologists: a primer[M]. Amsterdam: Academic Press, 2004. [25]BOOKSTEIN F L. Applying landmark methods to biological outline data[M]// MARDIA K V, GILL C A, DRYDEN I L. Image Fusion and Shape Variability Techniques. Leeds: Leeds University Press, 1996. [26]GREEN W D K. The thin-plate spline and images with curving features[M]// MARDIA K V, GILL C A, DRYDEN I L. Image Fusion and Shape Variability. Leeds: Leeds University Press, 1996. [27]SHEETS H D, KIM K, MITCHELL C E. A combined landmark and outline-based approach to ontogenetic shape change in the Ordovician trilobite Triarthrus becki[M]// ELEWA A M. Morphometrics. Berlin: Springer, 2004: 67-82. DOI: 10.1007/978-3-662-08865-4_6. [28]闫宝荣, 花保祯. 几何形态测量学及其在昆虫分类学和系统发育中的应用[J]. 昆虫分类学报, 2010, 32(4): 313-320. [29]闻慧, 王心丽. 轮廓形态测量法在生物分类应用中的研究进展[J]. 应用昆虫学报, 2013, 50(5): 1438-1446. DOI: 10.7679/j.issn.2095-1353.2013.197. [30]DALAYAP R M, TORRES M A J, DEMAYO C G. Landmark and outline methods in describing petal, sepal and labellum shapes of the flower of mokara orchid varieties[J]. International Journal of Agriculture & Biology, 2011, 13(5): 652-658. [31]蔡小娜, 苏筱雨, 黄大庄, 等. 基于几何形态测量学的天蛾科成虫数字化分类[J]. 林业科学, 2019, 55(1): 38-46. DOI: 10.11707/j.1001-7488.20190105. [32]邓维安, 姚大亨, 谷博. 蚱类昆虫前胸背板几何形态测量学分析[J]. 河池学院学报, 2019, 39(2): 1-7. DOI: 10.3969/j.issn.1672-9021.2019.02.002. [33]ANDRADE C A C, VIEIRA R D, ANANINA G, et al. Evolution of the male genitalia: morphological variation of the aedeagi in a natural population of Drosophila mediopunctata[J]. Genetica, 2009, 135(1): 13-23. DOI: 10.1007/s10709-008-9247-9. [34]DOĞ SARIKAYA A, OKUTANER A Y, SARIKAYA Ö. Geometric morphometric analysis of pronotum shape in two isolated populations of Dorcadion anatolicum Pic, 1900 (Coleoptera: Cerambycidae) in Turkey[J]. Türkiye Journal of Entomology, 2019, 43(3): 263-270. DOI: 10.16970/entoted.525860. [35]ROGGERO A, MORETTO P, BARBERO E,et al. The phylogenetic relationships of Tiaronthophagus n. gen. (Coleoptera, Scarabaeidae, Onthophagini) evaluated by phenotypic characters[J]. Insects, 2019, 10(3): 64. DOI: 10.3390/insects10030064. [36]GOODALL C. Procrustes methods in the statistical analysis of shape[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1991, 53(2): 285-321. DOI: 10.1111/j.2517-6161.1991.tb01825.x. [37]侯刚, 刘丹丹, 冯波. 基于地标点几何形态测量法识别北部湾4种白姑鱼矢耳石形态[J]. 中国水产科学, 2013, 20(6): 1293-1302. DOI: 10.3724/SP.J.1118.2013.01293. [38]LIEBERMAN D E, CARLO J, PONCE DE LEÓN M, et al. A geometric morphometric analysis of heterochrony in the cranium of chimpanzees and bonobos[J]. Journal of Human Evolution, 2007, 52(6): 647-662. DOI: 10.1016/j.jhevol.2006.12.005. [39]BOOKSTEIN F L. Combining the tools of geometric morphometrics[M]// MARCUS L F, CORTI M, LOY A, et al. Advances in Morphometrics, Boston: Springer, 1996, 284: 131-151. DOI: 10.1007/978-1-4757-9083-2_12. [40]SWIDERSKI D L.Morphological evolution of the scapula in tree squirrels, chipmunks and ground squirrels (Sciuridae): an analysis using thin-plate splines[J]. Evolution, 1993, 47(6): 1854-1873. DOI: 10.1111/j.1558-5646.1993.tb01274.x. [41]FOOTE M.Perimeter-based Fourier analysis: a new morphometric method applied to the trilobite cranidium[J]. Journal of Paleontology, 1989, 63(6): 880-885. DOI: 10.1017/S0022336000036556. [42]JACKSON I S C, CLAYBOUM T M. Morphometric analysis of inter- and intraspecific variation in the Cambrian helcionelloid mollusc Mackinnonia[J]. Palaeontology, 2018, 61(5): 761-773. DOI: 10.1111/pala.12368. [43]HAINES A J, CRAMPTON J S. Improvements to the method of Fourier shape analysis as applied in morphometric studies[J].Palaeontology, 2000, 43(4): 765-783. DOI: 10.1111/1475-4983.00148. [44]EMMONS C K, HARD J J, DAHLHEIM M E, et al. Quantifying variation in killer whale (Orcinus orca) morphology using elliptical Fourier analysis[J]. Marine Mammal Science, 2019, 35(1): 5-21. DOI: 10.1111/mms.12505. [45]DRYDEN I L, MARDIA K V. Statistical shape analysis[M]. Chichester: Wiley, 1998. [46]姜晓东, 成永旭, 潘建林, 等. 基于地标点几何形态测量法区分不同水系野生中华绒螯蟹[J]. 中国水产科学, 2019, 26(6): 1116-1125. DOI: 10.3724/SP.J.1118.2019.19074. [47]车星锦, 郭艺, 刀微, 等. 澜沧江多鳞荷马条鳅种群间形态差异的比较[J]. 水生态学杂志, 2021, 42(2): 64-71. DOI: 10.15928/j.1674-3075.201907310192. [48]UYEDA J C, CAETANO D S, PENNELL M W. Comparative analysis of principal components can be misleading[J]. Systematic Biology, 2015, 64(4): 677-689. DOI: 10.1093/sysbio/syv019. [49]REVELL L J.Size-correction and principal components for interspecific comparative studies[J]. Evolution, 2009, 63(12): 3258-3268. DOI: 10.1111/j.1558-5646.2009.00804.x. [50]POLLY P D, LAWING A M, FABRE A C, et al. Phylogenetic principal components analysis and geometric morphometrics[J].Hystrix, the Italian Journal of Mammalogy, 2013, 24(1): 33-41. DOI: 10.4404/hystrix-24.1-6383. [51]BAAB K L, PERRY J M G, ROHLF F J, et al.Phylogenetic, ecological, and allometric correlates of cranial shape in Malagasy lemuriforms[J]. Evolution, 2014, 68(5): 1450-1468. DOI: 10.1111/evo.12361. [52]吕岩威, 李平. 一种加权主成分距离的聚类分析方法[J]. 统计研究, 2016, 33(11): 102-108. DOI: 10.19343/j.cnki.11-1302/c.2016.11.014. [53]WANG M, WANG L X, FU N N, et al. Comparison of wing, ovipositor, and cornus morphologies between Sirex noctilio and Sirex nitobei using geometric morphometrics[J]. Insects, 2020, 11(2): 84. DOI: 10.3390/insects11020084. [54]王静, 夏结来, 叶冬青. 判别分析方法在医学应用中的进展[J]. 数理统计与管理, 2008, 27(2): 369-376. DOI: 10.13860/j.cnki.sltj.2008.02.008. [55]DUJARDIN J P, DUJARDIN S, KABA D. The maximum likelihood identification method applied to insect morphometric data[J]. Zoological Systematics, 2017, 42(1): 46-58. DOI: 10.11865/zs.201704. [56]刘昌景, 周用武. 鸮形目鸟类飞羽外观形态特征量化的判别分析[J]. 黑龙江畜牧兽医, 2018(17): 174-178, 242. DOI: 10.13881/j.cnki.hljxmsy.2017.11.0125. [57]黄利文. 改进的距离判别分析法[J]. 江南大学学报(自然科学版), 2011, 10(6): 745-748. DOI: 10.3969/j.issn. 1671-7147.2011.06.024. [58]唐宇政. 基于欧式距离的判别分析: 鸢尾花分类问题探究[J]. 现代商贸工业, 2019, 40(9): 183-185. DOI: 10.19311/j.cnki.1672-3198.2019.09.092. [59]曾澄波, 缪秋萍, 郜艳晖, 等. Bayes判别判别效果的模拟研究[J]. 数理医药学杂志, 2016, 29(9): 1272-1275. DOI: 10.3969/j.issn.1004-4337.2016. 09. 004. [60]肖培, 崔步云. 贝叶斯判别分析在布氏杆菌常见种别鉴定中的应用[J]. 中国卫生统计, 2013, 30(6): 802-804. [61]刘良刚. 最大似然法在桩海潜山内幕断裂识别中的应用[J]. 复杂油气藏, 2020, 13(1): 28-33. DOI: 10.16181/j.cnki.fzyqc.2020.01.006. [62]SUMRUAYPHOL S, SIRIBAT P, DUJARDIN J P, et al.Fasciola gigantica, F. hepatica and Fasciola intermediate forms: geometric morphometrics and an artificial neural network to help morphological identification[J]. PeerJ, 2020, 8: e8597. DOI: 10.7717/peerj.8597. [63]SPRATT N T, OLSON E C, MILLER R L. Morphological integration[J]. AIBS Bulletin, 1959, 9(1): 45. [64]GOSWAMI A. Cranial modularity shifts during mammalian evolution[J]. The American Naturalist, 2006, 168(2): 270-280. DOI: 10.1086/505758. [65]MARQUEZ E J. MINT: Modularity and integration analysis tool for morphometric data, V1.61[EB/OL]. [2021-06-04]. http://www-personal.umich.edu/. [66]LAROUCHE O, CLOUTIER R, ZELDITCH M L. Head, body and fins: patterns of morphological integration and modularity in fishes[J]. Evolutionary Biology, 2015, 42(3): 296-311. DOI: 10.1007/s11692-015-9324-9. [67]SEGURA V, CASSINI G H, PREVOSTI F J, et al.Integration or modularity in the mandible of canids (Carnivora: Canidae): a geometric morphometric approach[J]. Journal of Mammalian Evolution, 2021, 28(1): 145-157. DOI: 10.1007/s10914-020-09502-z. [68]MONTEIRO L R, NOGUEIRA M R. Adaptive radiations, ecological specialization, and the evolutionary integration of complex morphological structures[J]. Evolution, 2010, 64(3): 724-744. DOI: 10.1111/j.1558-5646.2009.00857.x. [69]PAVLINOV I Y, SPASSAKYA NN. Correlation structure of the cheek teeth enamel crown patterns in the genus Equus (Mammalia: Equidae): an analysis by geometric morphometrics with outline points[J]. Russian Journal of Theriology, 2021, 20(1): 70-81. DOI: 10.15298/rusjtheriol.20.1.08. [70]常琼琼, 蒋晓红, 侯晓晖. 基于几何形态学的三种库蠓翅的形态变化分析[J]. 应用昆虫学报, 2018, 55(2): 288-293. DOI: 10.7679/j.issn.2095-1353.2018.02.018. [71]KLINGENBERG C P.MorphoJ: an integrated software package for geometric morphometrics[J]. Molecular Ecology Resources, 2011, 11(2): 353-357. DOI: 10.1111/j.1755-0998.2010.02924.x. [72]HOULE D, MEZEY J, GALPERN P, et al. Automated measurement of Drosophila wings[J]. BMC Evolutionary Biology, 2003, 3: 25. DOI: 10.1186/1471-2148-3-25. [73]TOFILSKI A.DrawWing, a program for numerical description of insect wings[J]. Journal of Insect Science, 2004, 4: 17. DOI: 10.1093/jis/4.1.17. [74]NIE N H, BENT D H, HULL C H.SPSS: statistical package for the social sciences[M]. New York: MeGraw-Hill, 1970. [75]ROHLF F J.TpsUtil. 1.47[EB/OL]. [2021-06-04]. https://tpsutil.software.informer.com/. [76]ROHLF F J.TpsDig. v2.28[EB/OL]. [2021-06-04]. http://life.bio.sunysb.edu/morph/. [77]ROHLF F J.TpsRelw. v1.65[EB/OL]. [2021-06-04]. http://life.bio.sunysb.edu/morph/. [78]ROHLF F J.TpsRegr. v1.36[EB/OL]. [2021-06-04]. http://life.bio.sunysb.edu/morph/. [79]ROHLF F J.TpsSmall. v1.33[EB/OL]. [2021-06-04]. http://life.bio.sunysb.edu/morph/. [80]ROHLF F J.TpsSuper v1.14[EB/OL]. [2021-06-04]. http://life.bio.sunysb.edu/morph/. [81]ROHLF F J.Tps Thin-plate spline v1.20[EB/OL]. [2021-06-04]. http://life.bio.sunysb.edu/morph/. [82]ROHLF F J.TpsPLS v1.18[EB/OL]. [2021-06-04]. http://life.bio.sunysb.edu/morph/. [83]DUJARDIN S, DUJARDIN J P. Geometric morphometrics in the cloud[J]. Infection, Genetics and Evolution, 2019, 70: 189-196. DOI: 10.1016/j.meegid.2019.02.018. [84]HAMMER Ø, HARPER D A T, RYAN P D. PAST: Paleontological statistics software package for education and data analysis[J].Palaeontologia Electronica, 2001, 4(1): 1-9. [85]李荣荣, 李生才, 张虎芳. 几何形态测量学及其在半翅目中的研究进展[J]. 山西农业大学学报(自然科学版), 2016, 36(4): 235-241. DOI: 10.3969/j.issn.1671-8151.2016.04.004. [86]温光华, 白义, 周娟, 等. 基于几何形态测量学的五种稻蝗前后翅的形态变化研究[J]. 应用昆虫学报, 2015, 52(2): 356-362. DOI: 10.7679/j.issn.2095-1353.2015.039. [87]ZHANG R J, ZHOU S Y, DENG W A. Morphometrics analysis on the hind wing of Tetrigides (Orthoptera) and its application in taxonomy[J]. Entomotaxonomia, 2016, 38(3): 175-183. DOI: 10.11680/entomotax.2016024. [88]REBRINA F, Ć Morphometric variability and life history traits of the rare Paramogoplistes novaki in comparison to Mogoplistes brunneus (Orthoptera: Mogoplistidae)[J]. Annales de la Sociétée Ntomologique de France (N.S.), 2017, 53(5): 313-323. DOI: 10.1080/00379271.2017.1344565. [89]LIU F, CHEN L S, LIU C X. Taxonomic studies of the genus Decticus serville, 1831 from China (Orthoptera: Tettigoniidae: Tettigoniinae), based on Morphology and Songs[J]. Zootaxa, 2020, 4860(4): 563-576. DOI: 10.11646/zootaxa.4860.4.6. [90]ONEAL E, KNOWLES L L. Ecological selection as the cause and sexual differentiation as the consequence of species divergence?[J]. Proceedings of the Royal Society B-Biological Sciences, 2013, 280(1750): 20122236. DOI: 10.1098/rspb.2012.2236. [91]BAI Y, DONG J J, GUAN D L, et al. Geographic variation in wing size and shape of the grasshopper Trilophidia annulata (Orthoptera: Oedipodidae): morphological trait variations follow an ecogeographical rule[J]. Scientific Reports, 2016, 6(1): 32680. DOI: 10.1038/srep32680. [92]胡鑫, 潘晓丹, 周斌灵,等. 中华稻蝗不同龄期的形态多样性研究[J]. 应用昆虫学报, 2018, 55(3): 382-392. DOI: 10.7679/j.issn.2095-1353.2018.03.007. [93]KLINGENBERG C P, DEBAT V, ROFF D A. Quantitative genetics of shape in cricket wings: developmental integration in a functional structure[J]. Evolution, 2010, 64(10): 2935-2951. DOI: 10.1111/j.1558-5646.2010.01030.x. [94]CORONEL K H I, TORRES M A J, DEMAYO C G. Describing developmental modules in the hind wing of rice grasshopper, Oxya sp. using MINT software[J]. Research Journal of Recent Sciences, 2012, 1(9): 31-35. [95]和秋菊, 易传辉, 欧晓红. 竹蝗属昆虫系统发育分析[J]. 广东农业科学, 2011, 38(19): 135-137, 143. DOI: 10.16768/j.issn.1004-874x.2011.19.003. [96]GARCÍA-NAVAS V, NOGUERALES V. CORDERO P J, et al. Phenotypic disparity in Iberian short-horned grasshoppers (Acrididae): the role of ecology and phylogeny[J]. BMC Evolutionary Biology, 2017, 17(1): 109. DOI: 10.1186/s12862-017-0954-7. [97]NOGUERALES V, CORDERO P J, ORTEGO J. Integrating genomic and phenotypic data to evaluate alternative phylogenetic and species delimitation hypotheses in a recent evolutionary radiation of grasshoppers[J]. Molecular Ecology, 2018, 27(5): 1229-1244. DOI: 10.1111/mec.14504. [98]COLE T M, LELE S, RICHTSMEIER J T.A parametric bootstrap approach to the detection of phylogenetic signals in landmark data[M]. MACLEOD N, FOREY P L. Morphology, Shape and Phylogeny. London: CRC Press, 2002. [99]KLINGENBERG C P, GIDASZEWSKI N A.Testing and quantifying phylogenetic signals and homoplasy in morphometric data[J]. Systematic Biology, 2010, 59(3): 245-261. DOI: 10.1093/sysbio/syp106. |
[1] | 童凌晨, 李强, 岳鹏鹏. 基于CiteSpace的喀斯特土壤有机碳研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 22-34. |
[2] | 路凯峰, 杨溢龙, 李智. 一种基于BERT和DPCNN的Web服务分类方法[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 87-98. |
[3] | 刘静, 边迅. 直翅目昆虫线粒体基因组的特征及应用[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 17-28. |
[4] | 谭鸿健, 杨雅惠, 董明刚. 基于改进G-O费用模型的软件最优发布研究[J]. 广西师范大学学报(自然科学版), 2014, 32(2): 48-54. |
[5] | 李智, 庞柳, 刘国源, 杨智尚. 一种模型驱动的软件需求分析方法及技术支持[J]. 广西师范大学学报(自然科学版), 2013, 31(2): 19-26. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |