广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (5): 342-353.doi: 10.16088/j.issn.1001-6600.2022012902

• 综述 • 上一篇    下一篇

几何形态测量学及其在直翅目研究中的应用

陆相宜1,2, 边迅1,2*, 邓维安1,2   

  1. 1.珍稀濒危动植物生态与环境保护教育部重点实验室(广西师范大学), 广西 桂林 541006;
    2.广西珍稀濒危动物生态学重点实验室(广西师范大学), 广西 桂林 541006
  • 收稿日期:2022-01-29 修回日期:2022-03-31 出版日期:2022-09-25 发布日期:2022-10-18
  • 通讯作者: 边迅(1986—), 男, 内蒙古乌兰察布人, 广西师范大学讲师, 博士。E-mail: xunbian2010@163.com
  • 基金资助:
    国家自然科学基金(31802000); 广西科学基金(2018JJB130032)

Geometric Morphometrics and Its Application in Orthoptera

LU Xiangyi1,2, BIAN Xun1,2*, DENG Weian1,2   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. Guangxi Key Laboratory of Rare and Endangered Animal Ecology (Guangxi Normal University), Guilin Guangxi 541006, China
  • Received:2022-01-29 Revised:2022-03-31 Online:2022-09-25 Published:2022-10-18

摘要: 形态测量学是生物形态定量研究的重要部分,广泛应用于分类鉴定、系统发育、形态变异研究。本文阐述几何形态测量学的分析方法与流程,即标点法与轮廓线法、薄板样条分析与傅里叶分析、主成分分析和系统发育主成分分析、聚类分析、判别分析及模块集成分析,并总结几何形态测量学常用分析软件及其主要用途,同时介绍几何形态测量学在直翅目中的应用,以期为直翅目昆虫研究提供新思路。

关键词: 几何形态测量, 方法流程, 软件, 直翅目, 分类学, 形态变异

Abstract: Morphometrics, as a significant part of the quantitative study of biological morphology in biology, is widely used in the study of systematics, phylogeny and morphological variation. Firstly, the analytical methods of geometric morphometrics, including Landmark methods and Outline methods, Thin-plate spline analysis and Fourier analysis, principal component analysis and phylogenetic principal component analysis, cluster analysis, discriminant analysis and module integration analysis, are summarized. Then, the common softwares for and main use of geometric morphometrics are discussed. Finally, the application of geometric morphometrics in Orthoptera is introduced in order to promote understanding of geometric morphometrics and provide new ideas for the study.

Key words: geometric morphometrics, protocols, software, Orthoptera, taxonomy, morphological variation

中图分类号: 

  • Q964
[1]白明, 杨星科. 三维几何形态学概述及其在昆虫学中的应用[J]. 昆虫学报, 2014, 57(9): 1105-1111. DOI: 10.16380/j.kcxb.2014.09.005.
[2]BALTANÖS Ö, DANIELOPOL D L. Geometric morphometrics and its use in ostracod research: a short guide[J]. Joannea Geol Paläont, 2011, 11: 235-272.
[3]JAMES ROHLF F, MARCUS L F. A revolution morphometrics[J]. Trends in Ecology and Evolution, 1993, 8(4): 129-132. DOI: 10.1016/0169-5347(93)90024-J.
[4]SLICE D E. Landmark coordinates aligned byprocrustes analysis do not lie in Kendall’s shape space[J]. Systematic Biology, 2001, 50(1): 141-149. http://www.jstor.org/stable/3070962.
[5]黄海燕, 陈媛, 周善义. 光亮黑蚁与亮腹黑褐蚁(膜翅目: 蚁科)的形态测量学分析[J]. 广西师范大学学报(自然科学版), 2015, 33(2): 96-102. DOI: 10.16088/j.issn.1001-6600.2015.02.015.
[6]GRINANG J, DAS I, NG P K L. Geometric morphometric analysis in female freshwater crabs of Sarawak (Borneo) permits addressing taxonomy-related problems[J]. PeerJ, 2019, 7: e6205. DOI: 10.7717/peerj.6205.
[7]SANTOSO M A D, JULIANDI B, RAFFIUDIN R. Honey bees species differentiation using geometric morphometric on wing venations[J]. IOP Conference Series: Earth and Environmental Science, 2018, 197: 012015. DOI: 10.1088/1755-1315/197/1/012015.
[8]OLIVEIRA-CHRISTE R, MARRELLI M T. Using geometric morphometric analysis of wings to identify mosquito species from the subgenus Microculex (Diptera: Culicidae)[J]. Journal of Vector Ecology, 2021, 46(2): 221-225. DOI: 10.52707/1081-1710-46.2.221.
[9]BUSTAMANTE T, BAISER B, ELLIS J D. Comparing classical and geometric morphometric methods to discriminate between the South African honey bee subspecies Apis mellifera scutellata and Apis mellifera capensis (Hymenoptera: Apidae)[J]. Apidologie, 2020, 51(1): 123-136. DOI: 10.1007/s13592-019-00651-6.
[10]TRALLERO L, FARRÉ M, PHILLIPS R A, et al. Geometric morphometrics reveal interspecific and sexual differences in bill morphology in four sympatric planktivorous petrels[J]. Journal of Zoology, 2019, 307(3): 167-177. DOI: 10.1111/jzo.12631.
[11]BALAZADEH K, LITVAK M K. Using geometric morphometrics for sex determination on adult shortnose sturgeon (Acipenser brevirostrum)[J]. Aquaculture, 2018, 487: 89-96. DOI: 10.1016/j.aquaculture.2017.12.047.
[12]DALY H V. Insect morphometrics[J]. Annual Review of Entomology, 1985, 30: 415-438. DOI: 10.1146/annurev.en.30.010185.002215.
[13]白明, 杨星科. 几何形态测量法在生物形态学研究中的应用[J]. 昆虫知识, 2007, 44(1): 143-147. DOI: 10.3969/j.issn.0452-8255.2007.01.035.
[14]SHEETS H D.IMP-Integrated morphometrics package[EB/OL].[2021-06-04]. http://www2.canisius.edu/~sheets/morphsoft.html.
[15]OLSEN A M, WESTESTNEAT M W.StereoMorph: an R package for the collection of 3D landmarks and curves using a stereo camera set-up[J]. Methods in Ecology and Evolution, 2015, 6(3): 351-356. DOI: 10.1111/2041-210X.12326.
[16]SCHUNKE A C, BROMILEY P A, TAUTZ D, et al. TINA manual landmarking tool: software for the precise digitization of 3D landmarks[J]. Frontiers in Zoology, 2012, 9(1): 6. DOI: 10.1186/1742-9994-9-6.
[17]ADAMS D C, OTÖROLA-CASTILLO E.Geomorph: an R package for the collection and analysis of geometric morphometric shape data[J]. Methods in Ecology and Evolution, 2013, 4(4): 393-399. DOI: 10.1111/2041-210X.12035.
[18]BAI M, LI J, WANG W C, et al. A web based tool to merge geometric morphometric data from multiple characters[J]. Zoological Systematics, 2017, 42(1): 34-45. DOI: 10.11865/zs.201703.
[19]ROHLF F J, SLICE D. Extensions of the procrustes method for the optimal superimposition of landmarks[J]. Systematic Biology, 1990, 39(1): 40-59. DOI: 10.2307/2992207.
[20]杨红珍, 蔡小娜, 李湘涛, 等. 几何形态计量学在昆虫自动鉴定中的应用与展望[J]. 四川动物, 2013, 32(3): 464-469. DOI: 10.3969/j.issn.1000-7083.2013.03.030.
[21]BOOKSTEIN F L. Morphometric tools for landmark data: geometry and biology[M]. Cambridge: Cambridge University Press, 1992.
[22]史宇坤. 形态测量学(Morphometrics)常用方法及其在微体古生物学中的应用[J]. 微体古生物学报, 2017, 34(2): 179-191. DOI: 10.16087/j.cnki.1000-0674.2017.02.006.
[23]姜晓东, 成永旭, 潘建林, 等. 中国长江与荷兰野生中华绒螯蟹的头胸甲形态特征比较[J]. 淡水渔业, 2020, 50(1): 38-43. DOI: 10.13721/j.cnki.dsyy.2020.01.006.
[24]ZELDITCH M L, SWIDERSKI D L, SHEETS H D, et al. Geometric morphometrics for biologists: a primer[M]. Amsterdam: Academic Press, 2004.
[25]BOOKSTEIN F L. Applying landmark methods to biological outline data[M]// MARDIA K V, GILL C A, DRYDEN I L. Image Fusion and Shape Variability Techniques. Leeds: Leeds University Press, 1996.
[26]GREEN W D K. The thin-plate spline and images with curving features[M]// MARDIA K V, GILL C A, DRYDEN I L. Image Fusion and Shape Variability. Leeds: Leeds University Press, 1996.
[27]SHEETS H D, KIM K, MITCHELL C E. A combined landmark and outline-based approach to ontogenetic shape change in the Ordovician trilobite Triarthrus becki[M]// ELEWA A M. Morphometrics. Berlin: Springer, 2004: 67-82. DOI: 10.1007/978-3-662-08865-4_6.
[28]闫宝荣, 花保祯. 几何形态测量学及其在昆虫分类学和系统发育中的应用[J]. 昆虫分类学报, 2010, 32(4): 313-320.
[29]闻慧, 王心丽. 轮廓形态测量法在生物分类应用中的研究进展[J]. 应用昆虫学报, 2013, 50(5): 1438-1446. DOI: 10.7679/j.issn.2095-1353.2013.197.
[30]DALAYAP R M, TORRES M A J, DEMAYO C G. Landmark and outline methods in describing petal, sepal and labellum shapes of the flower of mokara orchid varieties[J]. International Journal of Agriculture & Biology, 2011, 13(5): 652-658.
[31]蔡小娜, 苏筱雨, 黄大庄, 等. 基于几何形态测量学的天蛾科成虫数字化分类[J]. 林业科学, 2019, 55(1): 38-46. DOI: 10.11707/j.1001-7488.20190105.
[32]邓维安, 姚大亨, 谷博. 蚱类昆虫前胸背板几何形态测量学分析[J]. 河池学院学报, 2019, 39(2): 1-7. DOI: 10.3969/j.issn.1672-9021.2019.02.002.
[33]ANDRADE C A C, VIEIRA R D, ANANINA G, et al. Evolution of the male genitalia: morphological variation of the aedeagi in a natural population of Drosophila mediopunctata[J]. Genetica, 2009, 135(1): 13-23. DOI: 10.1007/s10709-008-9247-9.
[34]DOĞ SARIKAYA A, OKUTANER A Y, SARIKAYA Ö. Geometric morphometric analysis of pronotum shape in two isolated populations of Dorcadion anatolicum Pic, 1900 (Coleoptera: Cerambycidae) in Turkey[J]. Türkiye Journal of Entomology, 2019, 43(3): 263-270. DOI: 10.16970/entoted.525860.
[35]ROGGERO A, MORETTO P, BARBERO E,et al. The phylogenetic relationships of Tiaronthophagus n. gen. (Coleoptera, Scarabaeidae, Onthophagini) evaluated by phenotypic characters[J]. Insects, 2019, 10(3): 64. DOI: 10.3390/insects10030064.
[36]GOODALL C. Procrustes methods in the statistical analysis of shape[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1991, 53(2): 285-321. DOI: 10.1111/j.2517-6161.1991.tb01825.x.
[37]侯刚, 刘丹丹, 冯波. 基于地标点几何形态测量法识别北部湾4种白姑鱼矢耳石形态[J]. 中国水产科学, 2013, 20(6): 1293-1302. DOI: 10.3724/SP.J.1118.2013.01293.
[38]LIEBERMAN D E, CARLO J, PONCE DE LEÓN M, et al. A geometric morphometric analysis of heterochrony in the cranium of chimpanzees and bonobos[J]. Journal of Human Evolution, 2007, 52(6): 647-662. DOI: 10.1016/j.jhevol.2006.12.005.
[39]BOOKSTEIN F L. Combining the tools of geometric morphometrics[M]// MARCUS L F, CORTI M, LOY A, et al. Advances in Morphometrics, Boston: Springer, 1996, 284: 131-151. DOI: 10.1007/978-1-4757-9083-2_12.
[40]SWIDERSKI D L.Morphological evolution of the scapula in tree squirrels, chipmunks and ground squirrels (Sciuridae): an analysis using thin-plate splines[J]. Evolution, 1993, 47(6): 1854-1873. DOI: 10.1111/j.1558-5646.1993.tb01274.x.
[41]FOOTE M.Perimeter-based Fourier analysis: a new morphometric method applied to the trilobite cranidium[J]. Journal of Paleontology, 1989, 63(6): 880-885. DOI: 10.1017/S0022336000036556.
[42]JACKSON I S C, CLAYBOUM T M. Morphometric analysis of inter- and intraspecific variation in the Cambrian helcionelloid mollusc Mackinnonia[J]. Palaeontology, 2018, 61(5): 761-773. DOI: 10.1111/pala.12368.
[43]HAINES A J, CRAMPTON J S. Improvements to the method of Fourier shape analysis as applied in morphometric studies[J].Palaeontology, 2000, 43(4): 765-783. DOI: 10.1111/1475-4983.00148.
[44]EMMONS C K, HARD J J, DAHLHEIM M E, et al. Quantifying variation in killer whale (Orcinus orca) morphology using elliptical Fourier analysis[J]. Marine Mammal Science, 2019, 35(1): 5-21. DOI: 10.1111/mms.12505.
[45]DRYDEN I L, MARDIA K V. Statistical shape analysis[M]. Chichester: Wiley, 1998.
[46]姜晓东, 成永旭, 潘建林, 等. 基于地标点几何形态测量法区分不同水系野生中华绒螯蟹[J]. 中国水产科学, 2019, 26(6): 1116-1125. DOI: 10.3724/SP.J.1118.2019.19074.
[47]车星锦, 郭艺, 刀微, 等. 澜沧江多鳞荷马条鳅种群间形态差异的比较[J]. 水生态学杂志, 2021, 42(2): 64-71. DOI: 10.15928/j.1674-3075.201907310192.
[48]UYEDA J C, CAETANO D S, PENNELL M W. Comparative analysis of principal components can be misleading[J]. Systematic Biology, 2015, 64(4): 677-689. DOI: 10.1093/sysbio/syv019.
[49]REVELL L J.Size-correction and principal components for interspecific comparative studies[J]. Evolution, 2009, 63(12): 3258-3268. DOI: 10.1111/j.1558-5646.2009.00804.x.
[50]POLLY P D, LAWING A M, FABRE A C, et al. Phylogenetic principal components analysis and geometric morphometrics[J].Hystrix, the Italian Journal of Mammalogy, 2013, 24(1): 33-41. DOI: 10.4404/hystrix-24.1-6383.
[51]BAAB K L, PERRY J M G, ROHLF F J, et al.Phylogenetic, ecological, and allometric correlates of cranial shape in Malagasy lemuriforms[J]. Evolution, 2014, 68(5): 1450-1468. DOI: 10.1111/evo.12361.
[52]吕岩威, 李平. 一种加权主成分距离的聚类分析方法[J]. 统计研究, 2016, 33(11): 102-108. DOI: 10.19343/j.cnki.11-1302/c.2016.11.014.
[53]WANG M, WANG L X, FU N N, et al. Comparison of wing, ovipositor, and cornus morphologies between Sirex noctilio and Sirex nitobei using geometric morphometrics[J]. Insects, 2020, 11(2): 84. DOI: 10.3390/insects11020084.
[54]王静, 夏结来, 叶冬青. 判别分析方法在医学应用中的进展[J]. 数理统计与管理, 2008, 27(2): 369-376. DOI: 10.13860/j.cnki.sltj.2008.02.008.
[55]DUJARDIN J P, DUJARDIN S, KABA D. The maximum likelihood identification method applied to insect morphometric data[J]. Zoological Systematics, 2017, 42(1): 46-58. DOI: 10.11865/zs.201704.
[56]刘昌景, 周用武. 鸮形目鸟类飞羽外观形态特征量化的判别分析[J]. 黑龙江畜牧兽医, 2018(17): 174-178, 242. DOI: 10.13881/j.cnki.hljxmsy.2017.11.0125.
[57]黄利文. 改进的距离判别分析法[J]. 江南大学学报(自然科学版), 2011, 10(6): 745-748. DOI: 10.3969/j.issn. 1671-7147.2011.06.024.
[58]唐宇政. 基于欧式距离的判别分析: 鸢尾花分类问题探究[J]. 现代商贸工业, 2019, 40(9): 183-185. DOI: 10.19311/j.cnki.1672-3198.2019.09.092.
[59]曾澄波, 缪秋萍, 郜艳晖, 等. Bayes判别判别效果的模拟研究[J]. 数理医药学杂志, 2016, 29(9): 1272-1275. DOI: 10.3969/j.issn.1004-4337.2016. 09. 004.
[60]肖培, 崔步云. 贝叶斯判别分析在布氏杆菌常见种别鉴定中的应用[J]. 中国卫生统计, 2013, 30(6): 802-804.
[61]刘良刚. 最大似然法在桩海潜山内幕断裂识别中的应用[J]. 复杂油气藏, 2020, 13(1): 28-33. DOI: 10.16181/j.cnki.fzyqc.2020.01.006.
[62]SUMRUAYPHOL S, SIRIBAT P, DUJARDIN J P, et al.Fasciola gigantica, F. hepatica and Fasciola intermediate forms: geometric morphometrics and an artificial neural network to help morphological identification[J]. PeerJ, 2020, 8: e8597. DOI: 10.7717/peerj.8597.
[63]SPRATT N T, OLSON E C, MILLER R L. Morphological integration[J]. AIBS Bulletin, 1959, 9(1): 45.
[64]GOSWAMI A. Cranial modularity shifts during mammalian evolution[J]. The American Naturalist, 2006, 168(2): 270-280. DOI: 10.1086/505758.
[65]MARQUEZ E J. MINT: Modularity and integration analysis tool for morphometric data, V1.61[EB/OL]. [2021-06-04]. http://www-personal.umich.edu/.
[66]LAROUCHE O, CLOUTIER R, ZELDITCH M L. Head, body and fins: patterns of morphological integration and modularity in fishes[J]. Evolutionary Biology, 2015, 42(3): 296-311. DOI: 10.1007/s11692-015-9324-9.
[67]SEGURA V, CASSINI G H, PREVOSTI F J, et al.Integration or modularity in the mandible of canids (Carnivora: Canidae): a geometric morphometric approach[J]. Journal of Mammalian Evolution, 2021, 28(1): 145-157. DOI: 10.1007/s10914-020-09502-z.
[68]MONTEIRO L R, NOGUEIRA M R. Adaptive radiations, ecological specialization, and the evolutionary integration of complex morphological structures[J]. Evolution, 2010, 64(3): 724-744. DOI: 10.1111/j.1558-5646.2009.00857.x.
[69]PAVLINOV I Y, SPASSAKYA NN. Correlation structure of the cheek teeth enamel crown patterns in the genus Equus (Mammalia: Equidae): an analysis by geometric morphometrics with outline points[J]. Russian Journal of Theriology, 2021, 20(1): 70-81. DOI: 10.15298/rusjtheriol.20.1.08.
[70]常琼琼, 蒋晓红, 侯晓晖. 基于几何形态学的三种库蠓翅的形态变化分析[J]. 应用昆虫学报, 2018, 55(2): 288-293. DOI: 10.7679/j.issn.2095-1353.2018.02.018.
[71]KLINGENBERG C P.MorphoJ: an integrated software package for geometric morphometrics[J]. Molecular Ecology Resources, 2011, 11(2): 353-357. DOI: 10.1111/j.1755-0998.2010.02924.x.
[72]HOULE D, MEZEY J, GALPERN P, et al. Automated measurement of Drosophila wings[J]. BMC Evolutionary Biology, 2003, 3: 25. DOI: 10.1186/1471-2148-3-25.
[73]TOFILSKI A.DrawWing, a program for numerical description of insect wings[J]. Journal of Insect Science, 2004, 4: 17. DOI: 10.1093/jis/4.1.17.
[74]NIE N H, BENT D H, HULL C H.SPSS: statistical package for the social sciences[M]. New York: MeGraw-Hill, 1970.
[75]ROHLF F J.TpsUtil. 1.47[EB/OL]. [2021-06-04]. https://tpsutil.software.informer.com/.
[76]ROHLF F J.TpsDig. v2.28[EB/OL]. [2021-06-04]. http://life.bio.sunysb.edu/morph/.
[77]ROHLF F J.TpsRelw. v1.65[EB/OL]. [2021-06-04]. http://life.bio.sunysb.edu/morph/.
[78]ROHLF F J.TpsRegr. v1.36[EB/OL]. [2021-06-04]. http://life.bio.sunysb.edu/morph/.
[79]ROHLF F J.TpsSmall. v1.33[EB/OL]. [2021-06-04]. http://life.bio.sunysb.edu/morph/.
[80]ROHLF F J.TpsSuper v1.14[EB/OL]. [2021-06-04]. http://life.bio.sunysb.edu/morph/.
[81]ROHLF F J.Tps Thin-plate spline v1.20[EB/OL]. [2021-06-04]. http://life.bio.sunysb.edu/morph/.
[82]ROHLF F J.TpsPLS v1.18[EB/OL]. [2021-06-04]. http://life.bio.sunysb.edu/morph/.
[83]DUJARDIN S, DUJARDIN J P. Geometric morphometrics in the cloud[J]. Infection, Genetics and Evolution, 2019, 70: 189-196. DOI: 10.1016/j.meegid.2019.02.018.
[84]HAMMER Ø, HARPER D A T, RYAN P D. PAST: Paleontological statistics software package for education and data analysis[J].Palaeontologia Electronica, 2001, 4(1): 1-9.
[85]李荣荣, 李生才, 张虎芳. 几何形态测量学及其在半翅目中的研究进展[J]. 山西农业大学学报(自然科学版), 2016, 36(4): 235-241. DOI: 10.3969/j.issn.1671-8151.2016.04.004.
[86]温光华, 白义, 周娟, 等. 基于几何形态测量学的五种稻蝗前后翅的形态变化研究[J]. 应用昆虫学报, 2015, 52(2): 356-362. DOI: 10.7679/j.issn.2095-1353.2015.039.
[87]ZHANG R J, ZHOU S Y, DENG W A. Morphometrics analysis on the hind wing of Tetrigides (Orthoptera) and its application in taxonomy[J]. Entomotaxonomia, 2016, 38(3): 175-183. DOI: 10.11680/entomotax.2016024.
[88]REBRINA F, Ć Morphometric variability and life history traits of the rare Paramogoplistes novaki in comparison to Mogoplistes brunneus (Orthoptera: Mogoplistidae)[J]. Annales de la Sociétée Ntomologique de France (N.S.), 2017, 53(5): 313-323. DOI: 10.1080/00379271.2017.1344565.
[89]LIU F, CHEN L S, LIU C X. Taxonomic studies of the genus Decticus serville, 1831 from China (Orthoptera: Tettigoniidae: Tettigoniinae), based on Morphology and Songs[J]. Zootaxa, 2020, 4860(4): 563-576. DOI: 10.11646/zootaxa.4860.4.6.
[90]ONEAL E, KNOWLES L L. Ecological selection as the cause and sexual differentiation as the consequence of species divergence?[J]. Proceedings of the Royal Society B-Biological Sciences, 2013, 280(1750): 20122236. DOI: 10.1098/rspb.2012.2236.
[91]BAI Y, DONG J J, GUAN D L, et al. Geographic variation in wing size and shape of the grasshopper Trilophidia annulata (Orthoptera: Oedipodidae): morphological trait variations follow an ecogeographical rule[J]. Scientific Reports, 2016, 6(1): 32680. DOI: 10.1038/srep32680.
[92]胡鑫, 潘晓丹, 周斌灵,等. 中华稻蝗不同龄期的形态多样性研究[J]. 应用昆虫学报, 2018, 55(3): 382-392. DOI: 10.7679/j.issn.2095-1353.2018.03.007.
[93]KLINGENBERG C P, DEBAT V, ROFF D A. Quantitative genetics of shape in cricket wings: developmental integration in a functional structure[J]. Evolution, 2010, 64(10): 2935-2951. DOI: 10.1111/j.1558-5646.2010.01030.x.
[94]CORONEL K H I, TORRES M A J, DEMAYO C G. Describing developmental modules in the hind wing of rice grasshopper, Oxya sp. using MINT software[J]. Research Journal of Recent Sciences, 2012, 1(9): 31-35.
[95]和秋菊, 易传辉, 欧晓红. 竹蝗属昆虫系统发育分析[J]. 广东农业科学, 2011, 38(19): 135-137, 143. DOI: 10.16768/j.issn.1004-874x.2011.19.003.
[96]GARCÍA-NAVAS V, NOGUERALES V. CORDERO P J, et al. Phenotypic disparity in Iberian short-horned grasshoppers (Acrididae): the role of ecology and phylogeny[J]. BMC Evolutionary Biology, 2017, 17(1): 109. DOI: 10.1186/s12862-017-0954-7.
[97]NOGUERALES V, CORDERO P J, ORTEGO J. Integrating genomic and phenotypic data to evaluate alternative phylogenetic and species delimitation hypotheses in a recent evolutionary radiation of grasshoppers[J]. Molecular Ecology, 2018, 27(5): 1229-1244. DOI: 10.1111/mec.14504.
[98]COLE T M, LELE S, RICHTSMEIER J T.A parametric bootstrap approach to the detection of phylogenetic signals in landmark data[M]. MACLEOD N, FOREY P L. Morphology, Shape and Phylogeny. London: CRC Press, 2002.
[99]KLINGENBERG C P, GIDASZEWSKI N A.Testing and quantifying phylogenetic signals and homoplasy in morphometric data[J]. Systematic Biology, 2010, 59(3): 245-261. DOI: 10.1093/sysbio/syp106.
[1] 童凌晨, 李强, 岳鹏鹏. 基于CiteSpace的喀斯特土壤有机碳研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 22-34.
[2] 路凯峰, 杨溢龙, 李智. 一种基于BERT和DPCNN的Web服务分类方法[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 87-98.
[3] 刘静, 边迅. 直翅目昆虫线粒体基因组的特征及应用[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 17-28.
[4] 谭鸿健, 杨雅惠, 董明刚. 基于改进G-O费用模型的软件最优发布研究[J]. 广西师范大学学报(自然科学版), 2014, 32(2): 48-54.
[5] 李智, 庞柳, 刘国源, 杨智尚. 一种模型驱动的软件需求分析方法及技术支持[J]. 广西师范大学学报(自然科学版), 2013, 31(2): 19-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张喜龙, 韩萌, 陈志强, 武红鑫, 李慕航. 面向复杂数据流的集成分类综述[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 1 -21 .
[2] 童凌晨, 李强, 岳鹏鹏. 基于CiteSpace的喀斯特土壤有机碳研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 22 -34 .
[3] 帖军, 隆娟娟, 郑禄, 牛悦, 宋衍霖. 基于SK-EfficientNet的番茄叶片病害识别模型[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 104 -114 .
[4] 翁烨, 邵德盛, 甘淑. 等式约束病态最小二乘的主成分Liu估计解法[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 115 -125 .
[5] 覃城阜, 莫芬梅. C3-和C4-临界连通图的结构[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 145 -153 .
[6] 贺青, 刘剑, 韦联福. 微弱电磁信号的物理极限检测:单光子探测器及其研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 1 -23 .
[7] 田芮谦, 宋树祥, 刘振宇, 岑明灿, 蒋品群, 蔡超波. 逐次逼近型模数转换器研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 24 -35 .
[8] 张师超, 李佳烨. 知识矩阵表示[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 36 -48 .
[9] 梁钰婷, 罗玉玲, 张顺生. 基于压缩感知的混沌图像加密研究综述[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 49 -58 .
[10] 郝雅茹, 董力, 许可, 李先贤. 预训练语言模型的可解释性研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 59 -71 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发