|
|
广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (4): 58-68.doi: 10.16088/j.issn.1001-6600.2024061802
韩烁, 江林峰, 杨建斌*
HAN Shuo, JIANG Linfeng, YANG Jianbin*
摘要: 针对物理信息神经网络(PINNs)方法在处理时间依赖性问题上的不足,本文提出一种基于注意力机制的物理信息神经网络(PINNsFormer)模拟洪水动态的方法,将PINNsFormer模型应用于求解圣维南方程。PINNsFormer模型能够有效捕捉时空依赖关系,从而提高求解精度和泛化能力。实验结果表明,此方法在模拟洪水传播和捕捉水面剖面细节方面表现出色。在与PINNs以及处理时间特征的神经网络模型FLS和QRes的对比中,PINNsFormer均具有更高的稳定性和精确性。在水平平面和均匀逆坡上的数值试验中,PINNsFormer方法均实现最低的损失值和测试误差,精度达到10-4量级,准确再现洪水淹没边界的形状。
中图分类号: TP183;O241.8
| [1] LAI W C, KHAN A A. Numerical solution of the Saint-Venant equations by an efficient hybrid finite-volume/finite-difference method[J]. Journal of Hydrodynamics, 2018, 30(2): 189-202. DOI: 10.1007/s42241-018-0020-y. [2] SUKRON M, HABIBAH U, HIDAYAT N. Numerical solution of Saint-Venant equation using Runge-Kutta fourth-order method[J]. Journal of Physics: Conference Series, 2021, 1872(1): 012036. DOI: 10.1088/1742-6596/1872/1/012036. [3] 钱江,张鼎.圣维南方程的3次B样条拟插值数值解[J].计算机科学,2023,50(4): 125-132. DOI: 10.11896/jsjkx.220800118. [4] E W N, YU B. The Deep Ritz Method: a deep learning-based numerical algorithm for solving variational problems[J]. Communications in Mathematics and Statistics, 2018, 6(1): 1-12. DOI: 10.1007/s40304-018-0127-z. [5] LONG Z C, LU Y P, DONG B. PDE-Net 2.0: learning PDEs from data with a numeric-symbolic hybrid deep network[J]. Journal of Computational Physics, 2019, 399: 108925. DOI: 10.1016/j.jcp.2019.108925. [6] LI Z Y, KOVACHKI N, AZIZZADENESHELI K, et al. Fourier neural operator for parametric partial differential equations[EB/OL]. (2021-05-17)[2024-06-01]. https://arxiv.org/abs/2010.08895. DOI: 10.48550/arXiv.2010.08895. [7] RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. DOI: 10.1016/j.jcp.2018.10.045. [8] 高飞,郭晓斌,袁冬芳,等.改进PINNs方法求解边界层对流占优扩散方程[J].广西师范大学学报(自然科学版),2023,41(6): 33-50. DOI: 10.16088/j.issn.1001-6600.2023032203. [9] LU L, MENG X H, MAO Z P, et al. DeepXDE: a deep learning library for solving differential equations[J]. SIAM Review, 2021, 63(1): 208-228. DOI: 10.1137/19M1274067. [10] JAGTAP A D, KARNIADAKIS G E. Extended physics-informed neural networks (XPINNs): a generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations[J]. Communications in Computational Physics, 2020, 28(5): 2002-2041. DOI: 10.4208/cicp.oa-2020-0164. [11] YU J, LU L, MENG X H, et al. Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 393: 114823. DOI: 10.1016/j.cma.2022.114823. [12] LU L, JIN P Z, PANG G F, et al. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators[J]. Nature Machine Intelligence, 2021, 3(3): 218-229. DOI: 10.1038/S42256-021-00302-5. [13] FENG D Y, TAN Z L, HE Q Z. Physics-informed neural networks of the Saint-Venant equations for downscaling a large-scale river model[J]. Water Resources Research, 2023, 59(2): e2022WR033168. DOI: 10.1029/2022WR033168. [14] 方卫华,徐孟启.基于PINNs的圣维南方程组数据同化方法[J].水资源保护,2023,39(3): 24-31,64. DOI: 10.3880/j.issn.1004-6933.2023.03.004. [15] NAZARI L F, CAMPONOGARA E, SEMAN L O. Physics-informed neural networks for modeling water flows in a river channel[J]. IEEE Transactions on Artificial Intelligence, 2024, 5(3): 1001-1015. DOI: 10.1109/TAI.2022.3200028. [16] ZHAO Z Y, DING X Y, PRAKASH B A. PINNsFormer: a transformer-based framework for physics-informed neural networks[EB/OL]. (2024-05-07)[2024-06-01]. https://arxiv.org/abs/2307.11833. DOI: 10.48550/arXiv.1804.02767. [17] 田晟,胡啸.基于Transformer模型的车辆轨迹预测[J].广西师范大学学报(自然科学版),2024,42(3): 47-58. DOI: 10.16088/j.issn.1001-6600.2023061203. [18] WONG J C, OOI C C, GUPTA A, et al. Learning in sinusoidal spaces with physics-informed neural networks[J]. IEEE Transactions on Artificial Intelligence, 2024, 5(3): 985-1000. DOI: 10.1109/TAI.2022.3192362. [19] BU J, KARPATNE A. Quadratic residual networks: a new class of neural networks for solving forward and inverse problems in physics involving PDEs[C]//Proceedings of the 2021 SIAM International Conference on Data Mining (SDM). Philadelphia, PA: Society for Industrial and Applied Mathematics, 2021: 675-683. DOI: 10.1137/1.9781611976700.76. [20] DE ALMEIDAG A M, PAUL B. Applicability of the local inertial approximation of the shallow water equations to flood modeling[J]. Water Resources Research, 2013,49(8): 4833-4844. DOI: 10.1002/wrcr.20366. [21] HUNTER N M, HORRITT M S, BATES P D, et al. An adaptive time step solution for raster-based storage cell modelling of floodplain inundation[J]. Advances in Water Resources, 2005, 28(9): 975-991. DOI: 10.1016/j.advwatres.2005.03.007. |
| [1] | 田晟, 熊辰崟, 龙安洋. 基于改进PointNet++的城市道路点云分类方法[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 1-14. |
| [2] | 石天怡, 南新元, 郭翔羽, 赵濮, 蔡鑫. 基于改进ConvNeXt的苹果叶片病害分类算法[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 83-96. |
| [3] | 王旭阳, 章家瑜. 基于跨模态增强网络的时序多模态情感分析[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 97-107. |
| [4] | 卢展跃, 陈艳平, 杨卫哲, 黄瑞章, 秦永彬. 基于掩码注意力与多特征卷积网络的关系抽取方法[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 12-22. |
| [5] | 郭翔羽, 石天怡, 陈燕楠, 南新元, 蔡鑫. 基于YOLO-CDBW模型的列车接触网异物检测研究[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 56-69. |
| [6] | 苏春海, 夏海英. 抗噪声双约束网络的面部表情识别[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 70-82. |
| [7] | 刘玉娜, 马双宝. 基于改进YOLOv8n的轻量化织物疵点检测算法[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 83-94. |
| [8] | 戴林华, 黎远松, 石睿, 何忠良, 李雷. HSED-YOLO:一种轻量化的带钢表面缺陷检测模型[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 95-106. |
| [9] | 余快, 宋宝贵, 邵攀, 余翱. 基于层级尺度交互的U-Net遥感影像建筑物提取方法[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 121-132. |
| [10] | 卢家辉, 陈庆锋, 王文广, 余谦, 何乃旭, 韩宗钊. 基于多尺度注意力的器官图像分割方法[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 138-148. |
| [11] | 杜帅文, 靳婷. 基于用户行为特征的深度混合推荐算法[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 91-100. |
| [12] | 田晟, 胡啸. 基于Transformer模型的车辆轨迹预测[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 47-58. |
| [13] | 王天雨, 袁嘉伟, 齐芮, 李洋. 多类型知识增强的微博立场检测模型[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 79-90. |
| [14] | 肖宇庭, 吕晓琪, 谷宇, 刘传强. 基于拆分残差网络的糖尿病视网膜病变分类[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 91-101. |
| [15] | 席凌飞, 伊力哈木·亚尔买买提, 刘雅洁. 基于改进YOLOv5的铝型材表面缺陷检测方法[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 111-119. |
|
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |