2025年04月13日 星期日

广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (1): 161-173.doi: 10.16088/j.issn.1001-6600.2024080202

• “生态保护与资源可持续利用”专辑 • 上一篇    下一篇

凋落物对喀斯特檵木土壤微生物生物量和土壤酶活性的影响

刘宁1,2, 刘佩雯1,2, 何浩勇1,2, 李嘉炜1,2, 邓玉婷1,2, 王露1,2, 吕嘉恒1,2, 卢丽求1,2, 黄坚华1,2, 马姜明1,2*   

  1. 1.广西师范大学 可持续发展创新研究院,广西 桂林 541006;
    2.广西漓江流域景观资源保育与可持续利用重点实验室(广西师范大学),广西 桂林 541006
  • 收稿日期:2024-08-02 修回日期:2024-09-14 出版日期:2025-01-05 发布日期:2025-02-07
  • 通讯作者: 马姜明(1976—),男,江西永新人,广西师范大学教授,博士。E-mail:mjming03@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金区域创新发展联合基金重点支持项目(U21A2007); 桂林市科学研究与技术开发计划项目(20230102-6)

Effects of Litter on Soil Microbial Biomass and Soil Enzyme Activities of Loropetalum chinense Community in Karst Area

LIU Ning1,2, LIU Peiwen1,2, HE Haoyong1,2, LI Jiawei1,2, DENG Yuting1,2, WANG Lu1,2, LÜ Jiaheng1,2, LU Liqiu1,2, HUANG Jianhua1,2, MA Jiangming1,2*   

  1. 1. Institute for Sustainable Development and Innovation, Guangxi Normal University, Guilin Guangxi 541006, China;
    2. Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), Guilin Guangxi 541006, China
  • Received:2024-08-02 Revised:2024-09-14 Online:2025-01-05 Published:2025-02-07

摘要: 土壤微生物及酶活性对土壤环境质量与土壤养分的可持续利用至关重要。为进一步揭示喀斯特檵木群落自然恢复演替过程土壤微生物生物量、土壤酶活性及其矢量特征对凋落物添加和去除处理的响应机制,本研究基于空间代替时间的研究方法,选择檵木群落的灌木阶段(演替前期)、乔灌阶段(演替中期)和老龄林阶段(演替后期)为研究对象,分别布设凋落物添加与去除实验,分析凋落物添加和去除对檵木群落土壤微生物生物量碳氮磷、土壤可获取碳氮磷酶活性及其化学计量比和矢量特征的影响,并结合土壤理化性质进行相关性分析,探究影响土壤酶活性及其化学计量比和矢量特征变化的主要驱动因子。结果表明:檵木群落演替后期土壤微生物生物量碳(MBC)含量及微生物商(QMB)值均显著高于演替前期和中期;演替前期土壤微生物生物量氮(MBN)及土壤微生物生物量磷(MBP)含量均显著低于演替中期和后期;与对照(CK)相比,凋落物及根系去除(NI)显著降低了檵木群落演替前期土壤含水率及3个演替阶段有机碳(SOC)及全氮(TN)含量,根系去除(NR)处理的SOC和TN含量均低于凋落物去除(NL);双倍凋落物添加(DL)显著增加了3个演替阶段的土壤SOC、TN、MBC、MBN及MBP含量;NL、NR、NI及DL处理显著降低了演替后期土壤β-1,4-乙酰氨基葡萄糖苷酶(NAG)活性及演替前期土壤酸性磷酸酶(AP)活性;NI处理显著增加了演替中期土壤酶AP活性,NR处理显著增加了演替后期土壤酶AP活性;土壤胞外酶C/N平均值为0.32,C/P平均值为1.21,N/P平均值为4.47。在所有的处理条件下,喀斯特檵木群落土壤胞外酶的矢量角度均低于45°,表明氮是影响该群落土壤养分的主要限制因素。RDA分析表明,影响土壤酶β-1,4-葡糖苷酶(BG)活性的主要因子为SOC、TN、pH及QMB;影响土壤酶NAG活性的主要因子为QMB、SOC及TN;影响土壤酶AP活性的主要因子为土壤MBP、MBN及TP。本研究表明檵木群落自然演替阶段和凋落物处理对喀斯特地区土壤微生物生物量、酶活性及土壤养分限制具有一定影响。

关键词: 凋落物, 土壤酶活性, 微生物生物量, 化学计量特征, 檵木

Abstract: Soil microorganisms and enzyme activities play a crucial role in the quality of the soil environment and the sustainable use of soil nutrients. In order to further reveal the mechanisms of soil microbial biomass, soil enzyme activity, and their vector characteristics in response to litter addition and removal during the natural succession stage of the Loropetalum chinense community in karst areas, this study used a spatial instead of temporal research method to select the understory soil of different stages of natural succession of the L. chinense community as the research subjects. Litter addition and removal experiments were conducted in the early stage (shrub stage), middle stage (arbor stage), and late stage (aged forest stage) of natural succession of the L. chinense community. The effects of apophyte addition and removal on soil microbiomass carbon, nitrogen and phosphorus, soil accessible carbon, nitrogen and phosphorus enzyme activities and their stoichiometric ratios and vectorial characteristics in fringe flower communities were analyzed, and the correlation with soil physico-chemical properties was also analyzed to explore the main driving factors affecting changes in soil enzyme activities and their stoichiometric ratios and vectorial characteristics. The results showed that: the MBC content and QMB value in the late successional stage of fringe flower community were significantly higher than those in the pre-successional and mid-successional stages; the MBN and MBP contents in the pre-successional stage were significantly lower than those in the mid-successional and post-successional stages; apomictic and root removal significantly reduced the soil water content in the pre-successional stage of the fringe flower community as well as the organic carbon and total nitrogen contents in the three successional stages when compared with the control; the root and contents of the root removal treatment were lower than those of the napier removal; and the doubled napier addition significantly increased the SOC, TN, microbial biomass carbon, microbial biomass nitrogen, and microbial biomass phosphorus contents of the three successional stages; NL, NR, NI, and DL treatments significantly reduced the NAG activity in the late stage of succession and the AP activity in the early stage of succession; NI treatment significantly increased the AP activity in the middle stage of succession, while NR treatment significantly increased the AP activity in the later stage of succession; The average value of soil extracellular enzyme C/N was 0.32, the average value of C/P was 1.21, and the average value of N/P was 4.47. The vector angle of soil extracellular enzymes in the karst fringe flower community was lower than 45° under all treatment conditions, indicating that N was the main limiting factor affecting soil nutrients in this community. The redundancy analysis showed that the main factors affecting the activity of soil enzyme β-1,4-glucosidase were SOC, TN, pH and QMB; the main factors affecting the activity of soil enzyme NAG were the microbial quotient, SOC and TN; and the main factors affecting the activity of soil enzyme AP were soil MBP, MBN and TP. This study showed that the natural succession stage of fringe flower community and apomictic treatment had certain influence on soil microbial amount, enzyme activity and soil nutrient limitation in karst area.

Key words: litter, soil enzyme activity, microbial biomass, stoichiometric characteristics, Loropetalum chinense

中图分类号:  S154

[1] FAN Z Z, LU S Y, LIU S, et al. The effects of vegetation restoration strategies and seasons on soil enzyme activities in the Karst landscapes of Yunnan, southwest China[J]. Journal of Forestry Research, 2020, 31(5): 1949-1957. DOI: 10.1007/s11676-019-00959-0.
[2] WANG K L, ZHANG C H, CHEN H S, et al. Karst landscapes of China: patterns, ecosystem processes and services[J]. Landscape Ecology, 2019, 34(12): 2743-2763. DOI: 10.1007/s10980-019-00912-w.
[3] JIANG Z C, LIAN Y Q, QIN X Q. Rocky desertification in Southwest China: impacts, causes, and restoration[J]. Earth-Science Reviews, 2014, 132: 1-12. DOI: 10.1016/j.earscirev.2014.01.005.
[4] 曹建华, 潘根兴, 袁道先, 等. 岩溶地区土壤溶解有机碳的季节动态及环境效应[J]. 生态环境, 2005, 14(2): 224-229. DOI: 10.3969/j.issn.1674-5906.2005.02.018.
[5] 李少男. 基于产业发展导向的石漠化地区乡村规划设计研究:以毕节市龙场村为例[D]. 贵阳: 贵州师范大学, 2021.
[6] 李秋梅, 黎胜杰, 王欣丽, 等. 改变碳输入对沂蒙山区典型次生林土壤微生物碳源代谢功能的影响[J]. 生态学报, 2021, 41(10): 4110-4119. DOI: 10.5846/stxb201912032611.
[7] BUCKLEY S, ALLEN D, BRACKIN R, et al. Microdialysis as an in situ technique for sampling soil enzymes[J]. Soil Biology & Biochemistry, 2019, 135: 20-27. DOI: 10.1016/j.soilbio.2019.04.007
[8] ALLISON S D, GARTNER T B, HOLLAND K, et al. Soil enzymes: linking proteomics and ecological processes[M]//HURST C J, CRAWFORD R L, GARLAND J L, et al. Manual of Environmental Microbiology. Washington, DC: ASM Press, 2007: 704-711. DOI: 10.1128/9781555815882.ch58.
[9] MAZZON M, CAVANI L, MARGON A, et al. Changes in soil phenol oxidase activities due to long-term application of compost and mineral N in a walnut orchard[J]. Geoderma, 2018, 316: 70-77. DOI: 10.1016/j.geoderma.2017.12.009.
[10] 侯庸, 王桂青, 王伯荪, 等. 广东黑石顶自然保护区南亚热带常绿阔叶林凋落物能流的研究[J]. 生态科学, 2000, 19(2): 7-11. DOI: 10.3969/j.issn.1008-8873.2000.02.002.
[11] 周梦田, 刘莉, 付若仙, 等. 杉木与木荷凋落物分解对杉木人工林土壤碳氮含量和酶活性影响[J]. 南京林业大学学报(自然科学版), 2024, 48(5): 131-138.
[12] 陆耀东, 薛立, 曹鹤, 等. 去除地面枯落物对加勒比松(Pinus caribaea)林土壤特性的影响[J]. 生态学报, 2008, 28(7): 3205-3211.
[13] SOKOL N W, BRADFORD M A. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input[J]. Nature Geoscience, 2019, 12(1): 46-53. DOI: 10.1038/s41561-018-0258-6.
[14] BEIDLER K V, OH Y E, PRITCHARD S G, et al. Mycorrhizal roots slow the decay of belowground litters in a temperate hardwood forest[J]. Oecologia, 2021, 197(3): 743-755. DOI: 10.1007/s00442-021-05051-1.
[15] 王一, 栾军伟, 刘世荣. 根系去除改变了毛竹林土壤酶活性对氮磷添加的响应[J]. 生态学报, 2023, 43(16): 6515-6527. DOI: 10.5846/stxb202205111316.
[16] 朱丽琴, 黄荣珍, 王金平, 等. 有机碳输入的改变对红壤恢复林地土壤养分和酶活性的影响[J]. 南昌工程学院学报, 2022, 41(6): 34-40. DOI: 10.3969/j.issn.1006-4869.2022.06.007.
[17] 马姜明, 吴蒙, 占婷婷, 等. 漓江流域岩溶区檵木群落不同恢复阶段物种组成及多样性变化[J]. 生态环境学报, 2013, 22(1): 66-71. DOI: 10.16258/j.cnki.1674-5906.2013.01.002.
[18] VERES Z, KOTROCZÓ Z, FEKETE I, et al. Soil extracellular enzyme activities are sensitive indicators of detrital inputs and carbon availability[J]. Applied Soil Ecology, 2015, 92: 18-23. DOI: 10.1016/j.apsoil.2015.03.006.
[19] 莫燕华, 马姜明, 苏静, 等. 桂林岩溶石山檵木群落老龄林植物叶性状[J]. 广西植物, 2019, 39(8): 1059-1068. DOI: 10.11931/guihaia.gxzw201809005.
[20] 刘佩雯, 覃云斌, 莫慧婷, 等. 凋落物及根系输入变化对喀斯特地区檵木土壤养分和胞外酶的影响[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 179-191. DOI: 10.16088/j.issn.1001-6600.2023031303.
[21] WANG L X, DENG D Z, FENG Q H, et al. Changes in litter input exert divergent effects on the soil microbial community and function in stands of different densities[J]. Science of the Total Environment, 2022, 845: 157297. DOI: 10.1016/j.scitotenv.2022.157297.
[22] 陈颖, 刘玉学, 陈重军, 等. 生物炭对土壤有机碳矿化的激发效应及其机理研究进展[J]. 应用生态学报, 2018, 29(1): 314-320. DOI: 10.13287/j.1001-9332.201801.024.
[23] LIU P W, DING S Y, LIU N, et al. Soil microbial community in relation to soil organic carbon and labile soil organic carbon fractions under detritus treatments in a subtropical karst region during the rainy and dry seasons[J]. Forests, 2023, 14(12): 2291. DOI: 10.3390/f14122291.
[24] JACKSON R B, LAJTHA K, CROW S E, et al. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls[J]. Annual Review of Ecology, Evolution, and Systematics, 2017, 48: 419-445. DOI: 10.1146/annurev-ecolsys-112414-054234.
[25] VILLARINO S H, PINTO P, JACKSON R B, et al. Plant rhizodeposition: a key factor for soil organic matter formation in stable fractions[J]. Science Advances, 2021, 7(16): eabd3176. DOI: 10.1126/sciadv.abd3176.
[26] SOKOL N W, SANDERMAN J, BRADFORD M A. Pathways of mineral-associated soil organic matter formation: integrating the role of plant carbon source, chemistry, and point of entry[J]. Global Change Biology, 2019, 25(1): 12-24. DOI: 10.1111/gcb.14482.
[27] 刘家齐, 梁燕, 肖凡, 等. 西南喀斯特区域不同植被恢复阶段土壤磷主要来源及其季节变化[J]. 应用生态学报, 2023, 34(12): 3313-3321. DOI: 10.13287/j.1001-9332.202312.016.
[28] 单文俊, 付琦, 邢亚娟, 等. 氮沉降对长白山白桦山杨天然次生林土壤微生物量碳氮和可溶性有机碳氮的影响[J]. 生态环境学报, 2019, 28(8): 1522-1530. DOI: 10.16258/j.cnki.1674-5906.2019.08.004.
[29] 吴建波, 王小丹. 藏北高寒草原土壤酶活性对氮添加的响应及其影响因素[J]. 草地学报, 2021, 29(3): 555-562. DOI: 10.11733/j.issn.1007-0435.2021.03.017.
[30] 王国兵, 阮宏华, 唐燕飞, 等. 森林土壤微生物生物量动态变化研究进展[J]. 安徽农业大学学报, 2009, 36(1): 100-104. DOI: 10.13610/j.cnki.1672-352x.2009.01.026.
[31] XUE S, LIU G B, DAI Q H, et al. Evolution of soil microbial biomass in restoration process of Robinia pseudoacacia plantations in an eroded environment[J]. Frontiers of Forestry in China, 2008, 3(3): 293-299. DOI: 10.1007/s11461-008-0040-9.
[32] 张成霞, 南志标. 土壤微生物生物量的研究进展[J]. 草业科学, 2010, 27(6): 50-57. DOI: 10.3969/j.issn.1001-0629.2010.06.009.
[33] 王国才, 尹世华, 耿芳, 等. 云南省琼英山茶园根际与非根际土壤养分与胞外酶活性特征分析[J/OL]. 分子植物育种:1-16[2024-08-01]. http://kns.cnki.net/kcms/detail/46.1068.S.20230327.1752.016.html.
[34] AI L, WU F Z, FAN X B, et al. Different effects of litter and root inputs on soil enzyme activities in terrestrial ecosystems[J]. Applied Soil Ecology, 2023, 183: 104764. DOI: 10.1016/j.apsoil.2022.104764.
[35] 邢学霞, 付迪, 黎建强, 等. 凋落物输入变化对云南松林土壤微生物数量和酶活性的影响[J]. 西北农林科技大学学报(自然科学版), 2023, 51(3): 62-70. DOI: 10.13207/j.cnki.jnwafu.2023.03.007.
[36] 刘珊杉, 周文君, 况露辉, 等. 亚热带常绿阔叶林土壤胞外酶活性对碳输入变化及增温的响应[J]. 植物生态学报, 2020, 44(12): 1262-1272. DOI: 10.17521/cjpe.2020.0310.
[37] LIU R S, WANG D M. C∶N∶P stoichiometric characteristics and seasonal dynamics of leaf-root-litter-soil in plantations on the loess plateau[J]. Ecological Indicators, 2021, 127: 107772. DOI: 10.1016/j.ecolind.2021.107772.
[38] SINSABAUGH R L, LAUBER C L, WEINTRAUB M N, et al. Stoichiometry of soil enzyme activity at global scale[J]. Ecology letters, 2008, 11(11): 1252-1264. DOI: 10.1111/j.1461-0248.2008.01245.x.
[39] XIAO W, CHEN X, JING X, et al. A meta-analysis of soil extracellular enzyme activities in response to global change[J]. Soil Biology and Biochemistry, 2018, 123: 21-32. DOI: 10.1016/j.soilbio.2018.05.001.
[1] 施慧露, 莫燕华, 骆海玉, 马姜明. 檵木乙酸乙酯萃取物抑菌活性研究[J]. 广西师范大学学报(自然科学版), 2025, 43(1): 1-8.
[2] 彭素琴, 刘郁林, 毛瑢, 刘苑秋, 樊乙萱, 周玉姗, 杨琪. 马尾松补植木荷对土壤微生物生物量碳氮的动态影响[J]. 广西师范大学学报(自然科学版), 2025, 43(1): 150-160.
[3] 刘学惠, 谢雅淇, 曾奕诚, 胡乐宁. 套种马铃薯对罗汉果农田土壤酶活性及细菌多样性的影响[J]. 广西师范大学学报(自然科学版), 2025, 43(1): 174-184.
[4] 刘佩雯, 覃云斌, 莫慧婷, 周珍辉, 蒙伟明, 黄启祥, 马姜明. 凋落物及根系输入变化对喀斯特地区檵木土壤养分和胞外酶的影响[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 179-191.
[5] 莫燕华, 邹涵, 马姜明, 李玉凤, 菅瑞, 秦佳双, 宋尊荣, 林正忠. 喀斯特石山不同演替阶段檵木群落土壤温湿度变化[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 122-130.
[6] 康福丽,朱国政,林钰,胡振兴,邓荫伟,冯玉能,陈胜华,陈付林,刘灵. AMF对金橘苗根围土壤酶活性及植株生长的影响[J]. 广西师范大学学报(自然科学版), 2017, 35(1): 104-112.
Viewed
Full text
32
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 32

  From Others local
  Times 21 11
  Rate 66% 34%

Abstract
47
Just accepted Online first Issue
0 0 46
  From Others local
  Times 42 5
  Rate 89% 11%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
[1] 何静, 冯元柳, 邵靖雯. 基于CiteSpace的多源数据融合研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 13 -27 .
[2] 刘畅平, 宋树祥, 蒋品群, 岑明灿. 基于开关电容的差分无源N通道滤波器[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 52 -60 .
[3] 王淑颖, 卢宇翔, 董淑彤, 陈默, 康秉娅, 蒋长兰, 宿程远. 污水中抗生素抗性基因传播过程及控制技术研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 1 -15 .
[4] 钟俏, 陈生龙, 唐聪聪. 水凝胶技术在微藻采收中的应用:现状、挑战与发展分析[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 16 -29 .
[5] 翟思琪, 蔡文君, 朱苏, 李韩龙, 宋海亮, 杨小丽, 杨玉立. 汲取液溶质反向扩散与正渗透中膜污染的相互关系研究[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 30 -39 .
[6] 郑国权, 秦永丽, 汪晨祥, 葛仕佳, 闻倩敏, 蒋永荣. ABR硫酸盐还原体系分级沉淀酸性矿山废水中重金属及矿物形成[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 40 -52 .
[7] 刘洋, 张毅杰, 章延, 李玲, 孔祥铭, 李红. 饮用水处理中藻类混凝消除技术的现状与趋势——基于CiteSpace的可视化分析[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 53 -66 .
[8] 田晟, 陈东. 基于深度强化学习的网联燃料电池混合动力汽车生态驾驶联合优化方法[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 67 -80 .
[9] 陈秀锋, 王成鑫, 赵凤阳, 杨凯, 谷可鑫. 改进DQN算法的单点交叉口信号控制方法[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 81 -88 .
[10] 李欣, 宁静. 基于时空特征融合的电力系统暂态稳定评估[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 89 -100 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发