2025年04月23日 星期三

广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (6): 40-52.doi: 10.16088/j.issn.1001-6600.2024040303

• “污水处理”专栏 • 上一篇    下一篇

ABR硫酸盐还原体系分级沉淀酸性矿山废水中重金属及矿物形成

郑国权1, 秦永丽1, 汪晨祥1, 葛仕佳1, 闻倩敏2, 蒋永荣1*   

  1. 1.桂林电子科技大学 生命与环境科学学院,广西 桂林 541004;
    2.桂林晶康环保有限公司,广西 桂林 541004
  • 收稿日期:2024-04-03 修回日期:2024-05-01 出版日期:2024-12-30 发布日期:2024-12-30
  • 通讯作者: 蒋永荣(1970—),女,广西桂林人,桂林电子科技大学教授。E-mail:svmsung2996@sina.com
  • 基金资助:
    国家自然科学基金(52060004);广西自然科学基金青年科学基金(2023GXNSFBA026265)

Stepwise Precipitation of Heavy Metals from Acid Mine Drainage and Mineral Formation in Sulfate-Reducing Anaerobic Baffled Reactor System

ZHENG Guoquan1, QIN Yongli1, WANG Chenxiang1, GE Shijia1, WEN Qianmin2, JIANG Yongrong1*   

  1. 1. College of Life and Environmental Science, Guilin University of Electronic Technology, Guilin Guangxi 541004, China;
    2. Guilin Jingkang Environmental Protection Co., Ltd, Guilin Guangxi 541004, China
  • Received:2024-04-03 Revised:2024-05-01 Online:2024-12-30 Published:2024-12-30

摘要: 为实现硫酸盐还原菌(SRB)法处理酸性矿山废水(AMD)过程中多种重金属的分级沉淀并持久固定,采用五隔室厌氧折流板反应器(ABR)处理模拟AMD,通过观测AMD对体系运行效率、颗粒污泥理化性质、生物活性和微生物群落结构的影响,考察AMD中重金属分级沉淀及沉淀物矿化成矿的特性。结果表明,ABR硫酸盐还原体系能够分级沉淀AMD中的镉(Cd)、锌(Zn)和铁(Fe),Cd2+和Zn2+主要在第1隔室被去除,Fe2+主要在第2、3隔室被去除,去除率均在99%以上。颗粒污泥的重金属化学形态分析及SEM观察表明,去除的重金属主要以硫化物结合态形式沉积在污泥中,进而转化为晶格态,并在污泥表面形成不规则颗粒物(0.3~0.7 μm)。XRD分析表明,第1隔室中的主要物相为纤锌矿、闪锌矿和硫镉矿,第2至第5隔室主要为磁铁矿和黄铁矿。微生物群落结构分析表明,反应器中Lactobacillus和Desulfovibrio在重金属沉淀及矿物形成过程中起关键作用。该研究为AMD中重金属的资源化处理及矿化成矿提供理论依据。

关键词: 酸性矿山废水, 重金属, 厌氧折流板反应器, 硫酸盐还原菌, 厌氧颗粒污泥, 微生物矿化, 金属硫化矿

Abstract: To achieve the fractional precipitation and persistent fixation of multiple heavy metals during the treatment of acid mine drainage (AMD) using sulfate-reducing bacteria (SRB), a five-compartment anaerobic baffled reactor (ABR) was used to treat the simulated AMD. The effects of AMD on system operation efficiency, physical and chemical properties, biological activity and microbial community structure of granular sludge were observed. The characteristics of heavy metal fractional precipitation and precipitated biomore formation in AMD were investigated. The results indicated that the sulfate reduction system of ABR was capable of precipitating cadmium (Cd), zinc (Zn), and iron (Fe) from AMD in a graded manner, with Cd and Zn primarily removed in the first compartment, and Fe predominantly eliminated in the second and third compartments, all with removal rates exceeding 99%. Chemical speciation analysis of granular sludge and SEM observations revealed that the removed heavy metals mainly deposit in sulfide-bound forms in the sludge, subsequently transforming into lattice states and forming irregular particles (0.3~0.7 μm) on the sludge surface. XRD analysis showed that the main phases in the first compartment were sphalerite, wurtzite, and greenockite, while magnetite and pyrite were predominant in compartments two to five. Analysis of microbial community structure demonstrated the crucial roles of Lactobacillus and Desulfovibrio in heavy metal precipitation and mineral formation processes within the reactor. This study provides theoretical basis for the resourceful treatment and mineralization of heavy metals in AMD.

Key words: acid mine drainage, heavy metals, anaerobic baffled reactor, sulfate reducing bacteria, anaerobic granular sludge, biological mineralization, metal sulfide minerals

中图分类号:  X703

[1] 闻倩敏, 秦永丽, 郑君健, 等. 硫酸盐还原菌法固定酸性矿山废水中重金属的研究进展[J]. 化工进展, 2022, 41(10): 5578-5587. DOI: 10.16085/j.issn.1000-6613.2021-2532.
[2] 倪师军, 李珊, 李泽琴, 等. 矿山酸性废水的环境影响及防治研究进展[J]. 地球科学进展, 2008,23(5): 501-508. DOI: 10.3321/j.issn:1001-8166.2008.05.010.
[3] 万由令, 李龙海. 玉米芯为碳源实现酸性矿山废水生物处理[J]. 工业安全与环保, 2004,30(5): 11-15. DOI: 10.3969/j.issn.1001-425X.2004.05.005.
[4] ZHANG M L, WANG H X. Preparation of immobilized sulfate reducing bacteria (SRB) granules for effective bioremediation of acid mine drainage and bacterial community analysis[J]. Minerals Engineering, 2016, 92: 63-71. DOI: 10.1016/j.mineng.2016.02.008.
[5] SAHINKAYA E, GUNGOR M. Comparison of sulfidogenic up-flow and down-flow fluidized-bed reactors for the biotreatment of acidic metal-containing wastewater[J]. Bioresource Technology, 2010, 101(24): 9508-9514. DOI: 10.1016/j.biortech.2010.07.113.
[6] DENG D Y, WEIDHAAS J L, LIN L S. Kinetics and microbial ecology of batch sulfidogenic bioreactors for co-treatment of municipal wastewater and acid mine drainage[J]. Journal of Hazardous Materials, 2016, 305: 200-208. DOI: 10.1016/j.jhazmat.2015.11.041.
[7] 揭念芹. 基础化学I[M]. 北京:科学出版社, 2000.
[8] LI F, WANG W, LI C C, et al. Self-mediated pH changes in culture medium affecting biosorption and biomineralization of Cd2+ by Bacillus cereus Cd01 [J]. Journal of Hazardous Materials, 2018, 358(S15): 178-186. DOI: 10.1016/j.jhazmat.2018.06.066.
[9] KAKSONEN A H, RIEKKOLA-VANHANEN M L, PUHAKKA J A. Optimization of metal sulphide precipitation in fluidized-bed treatment of acidic wastewater[J]. Water Research, 2003, 37(2): 255-266. DOI: 10.1016/S0043-1354(02)00267-1.
[10] MOKONE T P, HILLE R P V, LEWIS A E. Metal sulphides from wastewater: assessing the impact of supersaturation control strategies[J]. Water Research, 2012, 46(7): 2088-2100. DOI: 10.1016/j.watres.2012.01.027.
[11] LETTINGA G, FIELD J, VAN LIER J, et al. Advanced anaerobic wastewater treatment in the near future[J]. Water Science and Technology, 1997, 35(10): 5-12. DOI: 10.2166/wst.1997.0347.
[12] WANG J L, HUANG Y H, ZHAO X. Performance and characteristics of an anaerobic baffled reactor[J]. Bioresource Technology, 2004, 93(2): 205-208. DOI: 10.1016/J.BIORTECH.2003.06.004.
[13] 蒋永荣, 胡明成, 李学军, 等. ABR处理硫酸盐有机废水的相分离特性研究[J]. 环境科学, 2010, 31(7): 1544-1553.
[14] JIANG Y R, QIN Y L, YU F M, et al. Is COD/SO2-4 ratio responsible for metabolic phase-separation shift in anaerobic baffled reactor treating sulfate-laden wastewater? [J]. International Biodeterioration & Biodegradation, 2018, 126: 37-44. DOI: 10.1016/j.ibiod.2017.08.013.
[15] JIANG Y R, LI H, QIN Y L, et al. Spatial separation and bio-chain cooperation between sulfidogenesis and methanogenesis in an anaerobic baffled reactor with sucrose as the carbon source[J]. International Biodeterioration & Biodegradation, 2019, 138: 99-105. DOI: 10.1016/j.ibiod.2019.01.004.
[16] SAHINKAYA E, YUCESOY Z. Biotreatment of acidic zinc- and copper-containing wastewater using ethanol-fed sulfidogenic anaerobic baffled reactor[J]. Bioprocess and Biosystems Engineering, 2010, 33(8): 989-997. DOI: 10.1007/s00449-010-0423-9.
[17] 崔福斋. 生物矿化[M]. 北京:清华大学出版社, 2007:325.
[18] LABRENZ M, DRUSCHEL G K, THOMSEN-EBERT T, et al. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria[J]. Science, 2000, 290(5497): 1744-1747. DOI: 10.1126/science.290.5497.1744.
[19] ZHANG H Z, BANFIELD J F. Aggregation, coarsening, and phase transformation in ZnS nanoparticles studied by molecular dynamics simulations[J]. Nano Letters, 2004, 4(4): 713-718. DOI: 10.1021/nl035238a.
[20] GARCÍA C, MORENO D A, BALLESTER A, et al. Bioremediation of an industrial acid mine water by metal-tolerant sulphate-reducing bacteria[J]. Minerals Engineering, 2001, 14(9): 997-1008. DOI: 10.1016/S0892-6875(01)00107-8.
[21] 王大为, 毕春梦, 秦永丽, 等. 硫酸盐还原活性污泥矿化固定酸性矿山废水中的镉[J]. 化工进展, 2023, 42(10): 5509-5519. DOI: 10.16085/j.issn.1000-6613.2022-2222.
[22] JIANG Y R, ZHANG J, WEN Q M, et al. Up-flow anaerobic column reactor for sulfate-rich cadmium-bearing wastewater purification: system performance, removal mechanism and microbial community structure[J]. Biodegradation, 2022, 33(3): 239-253. DOI: 10.1007/s10532-022-09983-0.
[23] ASSOCIATION C, WASHINGTON D. APHA, A. P. H. A. : Standard methods for the examination of water and wastewater[J]. American Physical Education Review, 1995, 24(9): 481-486.
[24] 陈中云, 闵航, 吴伟祥. 水稻田土壤硫酸盐还原活性的测定及其影响因子的研究[J]. 土壤通报, 2003,34(5): 455-458. DOI: 10.3321/j.issn:0564-3945.2003.05.018.
[25] ALBORÉS A F, CID B P, GÓMEZ E F, et al. Comparison between sequential extraction procedures and single extractions for metal partitioning in sewage sludge samples[J]. Analyst, 2000, 125(7): 1353-1357. DOI: 10.1039/b001983f.
[26] 肖飞, 丁旭升, 樊培培, 等. 基于高通量测序技术研究环境微生物群落结构特征[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 175-189. DOI: 10.16088/j.issn.1001-6600.2021111702.
[27] 钟晓兰, 周生路, 黄明丽, 等. 土壤重金属的形态分布特征及其影响因素[J]. 生态环境学报, 2009, 18(4): 1266-1273. DOI: 10.3969/j.issn.1674-5906.2009.04.013.
[28] 戴友芝, 施汉昌, 冀静平,等. 厌氧折流板反应器处理有毒废水及其污泥特性的研究[J]. 环境科学学报, 2000, 20(3): 284-289. DOI: 10.13671/j.hjkxxb.2000.03.006.
[29] 袁乙卜, 张建民, 陈希, 等. 大分子有机物作用下胞外聚合物对除磷污泥颗粒化的影响[J]. 环境工程学报, 2021, 15(4): 1321-1332. DOI: 10.12030/j.cjee.202010101.
[30] MAHTO K U, VANDAN A, PRIYADARSHANEE M, et al. Bacterial biofilm and extracellular polymeric substances in the treatment of environmental pollutants: beyond the protective role in survivability[J]. Journal of Cleaner Production, 2022, 379: 134759. DOI: 10.1016/j.jclepro.2022.134759.
[31] DO H, CHE C, ZHAO Z J, et al. Extracellular polymeric substance from Rahnella sp. LRP3 converts available Cu into Cu5(PO4)2(OH)4 in soil through biomineralization process[J]. Environmental Pollution, 2020, 260: 114051. DOI: 10.1016/j.envpol.2020.114051.
[32] LIN Q, WANG J S, FU S Y, et al. Elemental sulfur in northern South China Sea sediments and its significance[J]. Science China Earth Sciences, 2015, 58(12): 2271-2278. DOI: 10.1007/s11430-015-5182-7.
[33] 谢巧勤, 陈天虎, 范子良, 等. 铜陵新桥硫铁矿床中胶状黄铁矿微尺度观察及其成因探讨[J]. 中国科学:地球科学, 2014, 44(12): 2665-2674.
[34] YALIKUN Y, XUE C J, DAI Z J, et al. Microbial structures and possible bacterial sulfide fossils in the giant Jinding Zn-Pb deposit, Yunnan, SW-China: insights into the genesis of Zn-Pb sulfide mineralization[J]. Ore Geology Reviews, 2018, 92: 61-72. DOI: 10.1016/j.oregeorev.2017.11.004.
[35] PICARD A, GARTMAN A, CLARKE D R, et al. Sulfate-reducing bacteria influence the nucleation and growth of mackinawite and greigite[J]. Geochimica et Cosmochimica Acta, 2018, 220: 367-384. DOI: 10.1016/j.gca.2017.10.006.
[36] JIANG N, FENG Y Q, HUANG Q, et al. Effect of environmental pH on mineralization of anaerobic iron-oxidizing bacteria [J]. Frontiers in Microbiology, 2022, 13: 885098. DOI: 10.3389/fmicb.2022.885098.
[37] HAN X H, TOMASZEWSKI E J, SORWAT J, et al. Effect of microbial biomass and humic acids on abiotic and biotic magnetite formation[J]. Environmental Science & Technology, 2020, 54(7): 4121-4130. DOI: 10.1021/acs.est.9b07095.
[38] 欧正, 韦重韬, SANTIGIE K S, 等.广西下巴铅锌矿床镉元素的富集规律研究[J]. 有色金属(矿山部分), 2013, 65(1): 57-61. DOI: 10.3969/j.issn.1671-4172.2013.01.014.
[39] FRANCIS A J, DODGE C J, GILLOW J B et al. Reductive dissolution of Pu(IV) by Clostridium sp. under anaerobic conditions[J]. Environmental Science & Technology, 2008, 42(7): 2355-2360. DOI: 10.1021/es072016w.
[40] GUPTA R S, GAO B L. Phylogenomic analyses of clostridia and identification of novel protein signatures that are specific to the genus Clostridium sensu stricto (cluster I) [J]. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(2): 285-294. DOI: 10.1099/ijs.0.001792-0.
[41] MENG X H, CAO Q, SUN Y, et al. 16S rRNA genes- and metagenome-based confirmation of syntrophic butyrate-oxidizing methanogenesis enriched in high butyrate loading[J]. Bioresource Technology, 2022, 345: 126483. DOI: 10.1016/j.biortech.2021.126483.
[42] STEFANIE J W H, ELFERINK O, VISSER A, et al. Sulfate reduction in methanogenic bioreactors[J]. FEMS Microbiology Reviews, 1994, 15(2/3): 119-136. DOI: 10.1016/0168-6445(94)90108-2.
[43] 姬玉欣, 马春, 金仁村, 等. 硫酸盐生物还原中电子供体的选择[J]. 化工进展, 2011, 30(12): 2593-2600. DOI: 10.16085/j.issn.1000-6613.2011.12.039.
[44] 汪晨祥, 秦永丽, 蒋永荣, 等. ABR产酸-硫酸盐还原相颗粒污泥富集PHAs产生菌[J]. 化工进展, 2023, 42(12): 6658-6665. DOI: 10.16085/j.issn.1000-6613.2023-0203.
[45] LI Z, LOU Y, DING J, et al. Metabolic regulation of ethanol-type fermentation of anaerobic acidogenesis at different pH based on transcriptome analysis of Ethanoligenens harbinense[J]. Biotechnology for Biofuels, 2020, 13: 101.DOI: 10.1186/s13068-020-01740-w.
[46] KARNACHUK O V, MARDANOV A V, AVAKYAN M R, et al. Draft genome sequence of the first acid-tolerant sulfate-reducing deltaproteobacterium Desulfovibrio sp. TomC having potential for minewater treatment[J]. FEMS Microbiology Letters, 2015, 362(4): 1-3. DOI: 10.1093/femsle/fnv007.
[47] BERGEY D H, HOLT J G. Bergey’s manual of determinative bacteriology[M]. 9th ed.Baltimore: Williams & Wilkins, 1994.
[48] YUAN T G, KO J H, ZHOU L L, et al. Iron oxide alleviates acids stress by facilitating syntrophic metabolism between Syntrophomonas and methanogens[J]. Chemosphere, 2020, 247: 125866. DOI: 10.1016/j.chemosphere.2020.125866.
[49] AMEEN F A, HAMDAN A M, EL-NAGGAR M Y. Assessment of the heavy metal bioremediation efficiency of the novel marine lactic acid bacterium, Lactobacillus plantarum MF042018[J]. Scientific Reports, 2020, 10(1): 314. DOI: 10.1038/s41598-019-57210-3.
[50] XUE Z F, CHENG W C, WANG L, et al. Effect of a harsh circular environment on self-healing microbial-induced calcium carbonate materials for preventing Pb2+ migration[J]. Environmental Technology & Innovation, 2023, 32: 103380. DOI: 10.1016/j.eti.2023.103380.
[51] TOURNEY J, NGWENYA B T. The role of bacterial extracellular polymeric substances in geomicrobiology[J]. Chemical Geology, 2014, 386: 115-132. DOI: 10.1016/j.chemgeo.2014.08.011.
[52] WEN L M, HUANG L Y, WANG Y, et al. Facet-engineered hematite boosts microbial electrogenesis by synergy of promoting electroactive biofilm formation and extracellular electron transfer[J]. Science of The Total Environment, 2022, 819: 153154. DOI: 10.1016/j.scitotenv.2022.153154.
[53] 唐琳钦, 王安柳, 宿程远, 等. 不同氮源对好氧颗粒污泥理化特性及微生物群落影响[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 144-153. DOI: 10.16088/j.issn.1001-6600.2020061301.
[54] ZENG W M, LI F, WU C C, et al. Role of extracellular polymeric substance (EPS) in toxicity response of soil bacteria Bacillus sp. S3 to multiple heavy metals[J]. Bioprocess and Biosystems Engineering, 2020, 43(1): 153-167. DOI: 10.1007/s00449-019-02213-7.
[1] 王琳清, 鄢韬, 陈永坚, 李富荣, 王旭, 李文英, 杜瑞英, 杨秀丽. 不同水分条件下施用调理剂对土壤铅镉的钝化效应[J]. 广西师范大学学报(自然科学版), 2023, 41(4): 231-242.
[2] 赵珂艺, 张宁宁, 薛洁怡, 李广娈, 李艺, 于方明, 刘可慧. 重金属超富集植物研究CiteSpace可视化分析[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 191-209.
[3] 彭丽梅, 赵理, 周悟, 胡月明. 广州市从化区耕地土壤重金属风险评价[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 118-129.
[4] 徐婷婷, 余秋平, 漆培艺, 刘可慧, 李艺, 蒋永荣, 于方明. 不同淋洗剂对矿区土壤重金属解吸的影响[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 188-193.
[5] 郑海霞, 王月, 陈芬, 勾朝阳, 郑庆荣. 五台山南台土壤重金属特征及污染风险评价[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 99-107.
[6] 冯修, 马楠楠, 职红涛, 韩双乔, 张翔. 重金属捕集剂UDTC对低浓度镉废水的处理研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 63-67.
[7] 陈春强,邓 华,陈小梅. 广西3个锰矿恢复区农作物重金属健康风险评价[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 127-135.
[8] 陈春强, 邓华, 黄芳芳. 广西桂平锰矿区土壤重金属含量及形态分析[J]. 广西师范大学学报(自然科学版), 2014, 32(4): 108-114.
[9] 张俊, 黎道洪, 杜典松. 贵州龙井洞和白龙洞裸灶螽对重金属的富集[J]. 广西师范大学学报(自然科学版), 2012, 30(4): 104-109.
[10] 唐宇庭, 黄佳玉, 王维生, 张超兰. 低分子有机酸对油菜吸收Cd和Zn的影响[J]. 广西师范大学学报(自然科学版), 2012, 30(2): 127-131.
[11] 邓华, 许丹丹, 李明顺, 李金城. 不同消解方法分析土壤中重金属含量的比较[J]. 广西师范大学学报(自然科学版), 2010, 28(3): 80-83.
Viewed
Full text
10
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 10

  From local
  Times 10
  Rate 100%

Abstract
61
Just accepted Online first Issue
0 0 61
  From Others local
  Times 57 4
  Rate 93% 7%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
[1] 朱格格, 黄安书, 覃盈盈. 基于Web of Science的国际红树林研究发展态势分析[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 1 -12 .
[2] 何静, 冯元柳, 邵靖雯. 基于CiteSpace的多源数据融合研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 13 -27 .
[3] 王淑颖, 卢宇翔, 董淑彤, 陈默, 康秉娅, 蒋长兰, 宿程远. 污水中抗生素抗性基因传播过程及控制技术研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 1 -15 .
[4] 钟俏, 陈生龙, 唐聪聪. 水凝胶技术在微藻采收中的应用:现状、挑战与发展分析[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 16 -29 .
[5] 翟思琪, 蔡文君, 朱苏, 李韩龙, 宋海亮, 杨小丽, 杨玉立. 汲取液溶质反向扩散与正渗透中膜污染的相互关系研究[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 30 -39 .
[6] 刘洋, 张毅杰, 章延, 李玲, 孔祥铭, 李红. 饮用水处理中藻类混凝消除技术的现状与趋势——基于CiteSpace的可视化分析[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 53 -66 .
[7] 田晟, 陈东. 基于深度强化学习的网联燃料电池混合动力汽车生态驾驶联合优化方法[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 67 -80 .
[8] 陈秀锋, 王成鑫, 赵凤阳, 杨凯, 谷可鑫. 改进DQN算法的单点交叉口信号控制方法[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 81 -88 .
[9] 李欣, 宁静. 基于时空特征融合的电力系统暂态稳定评估[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 89 -100 .
[10] 段沁宇, 薛贵军, 谭全伟, 谢文举. 基于SVMD的改进BWO-TimesNet短期热负荷预测模型[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 101 -116 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发