|
广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (6): 40-52.doi: 10.16088/j.issn.1001-6600.2024040303
郑国权1, 秦永丽1, 汪晨祥1, 葛仕佳1, 闻倩敏2, 蒋永荣1*
ZHENG Guoquan1, QIN Yongli1, WANG Chenxiang1, GE Shijia1, WEN Qianmin2, JIANG Yongrong1*
摘要: 为实现硫酸盐还原菌(SRB)法处理酸性矿山废水(AMD)过程中多种重金属的分级沉淀并持久固定,采用五隔室厌氧折流板反应器(ABR)处理模拟AMD,通过观测AMD对体系运行效率、颗粒污泥理化性质、生物活性和微生物群落结构的影响,考察AMD中重金属分级沉淀及沉淀物矿化成矿的特性。结果表明,ABR硫酸盐还原体系能够分级沉淀AMD中的镉(Cd)、锌(Zn)和铁(Fe),Cd2+和Zn2+主要在第1隔室被去除,Fe2+主要在第2、3隔室被去除,去除率均在99%以上。颗粒污泥的重金属化学形态分析及SEM观察表明,去除的重金属主要以硫化物结合态形式沉积在污泥中,进而转化为晶格态,并在污泥表面形成不规则颗粒物(0.3~0.7 μm)。XRD分析表明,第1隔室中的主要物相为纤锌矿、闪锌矿和硫镉矿,第2至第5隔室主要为磁铁矿和黄铁矿。微生物群落结构分析表明,反应器中Lactobacillus和Desulfovibrio在重金属沉淀及矿物形成过程中起关键作用。该研究为AMD中重金属的资源化处理及矿化成矿提供理论依据。
中图分类号: X703
[1] 闻倩敏, 秦永丽, 郑君健, 等. 硫酸盐还原菌法固定酸性矿山废水中重金属的研究进展[J]. 化工进展, 2022, 41(10): 5578-5587. DOI: 10.16085/j.issn.1000-6613.2021-2532. [2] 倪师军, 李珊, 李泽琴, 等. 矿山酸性废水的环境影响及防治研究进展[J]. 地球科学进展, 2008,23(5): 501-508. DOI: 10.3321/j.issn:1001-8166.2008.05.010. [3] 万由令, 李龙海. 玉米芯为碳源实现酸性矿山废水生物处理[J]. 工业安全与环保, 2004,30(5): 11-15. DOI: 10.3969/j.issn.1001-425X.2004.05.005. [4] ZHANG M L, WANG H X. Preparation of immobilized sulfate reducing bacteria (SRB) granules for effective bioremediation of acid mine drainage and bacterial community analysis[J]. Minerals Engineering, 2016, 92: 63-71. DOI: 10.1016/j.mineng.2016.02.008. [5] SAHINKAYA E, GUNGOR M. Comparison of sulfidogenic up-flow and down-flow fluidized-bed reactors for the biotreatment of acidic metal-containing wastewater[J]. Bioresource Technology, 2010, 101(24): 9508-9514. DOI: 10.1016/j.biortech.2010.07.113. [6] DENG D Y, WEIDHAAS J L, LIN L S. Kinetics and microbial ecology of batch sulfidogenic bioreactors for co-treatment of municipal wastewater and acid mine drainage[J]. Journal of Hazardous Materials, 2016, 305: 200-208. DOI: 10.1016/j.jhazmat.2015.11.041. [7] 揭念芹. 基础化学I[M]. 北京:科学出版社, 2000. [8] LI F, WANG W, LI C C, et al. Self-mediated pH changes in culture medium affecting biosorption and biomineralization of Cd2+ by Bacillus cereus Cd01 [J]. Journal of Hazardous Materials, 2018, 358(S15): 178-186. DOI: 10.1016/j.jhazmat.2018.06.066. [9] KAKSONEN A H, RIEKKOLA-VANHANEN M L, PUHAKKA J A. Optimization of metal sulphide precipitation in fluidized-bed treatment of acidic wastewater[J]. Water Research, 2003, 37(2): 255-266. DOI: 10.1016/S0043-1354(02)00267-1. [10] MOKONE T P, HILLE R P V, LEWIS A E. Metal sulphides from wastewater: assessing the impact of supersaturation control strategies[J]. Water Research, 2012, 46(7): 2088-2100. DOI: 10.1016/j.watres.2012.01.027. [11] LETTINGA G, FIELD J, VAN LIER J, et al. Advanced anaerobic wastewater treatment in the near future[J]. Water Science and Technology, 1997, 35(10): 5-12. DOI: 10.2166/wst.1997.0347. [12] WANG J L, HUANG Y H, ZHAO X. Performance and characteristics of an anaerobic baffled reactor[J]. Bioresource Technology, 2004, 93(2): 205-208. DOI: 10.1016/J.BIORTECH.2003.06.004. [13] 蒋永荣, 胡明成, 李学军, 等. ABR处理硫酸盐有机废水的相分离特性研究[J]. 环境科学, 2010, 31(7): 1544-1553. [14] JIANG Y R, QIN Y L, YU F M, et al. Is COD/SO2-4 ratio responsible for metabolic phase-separation shift in anaerobic baffled reactor treating sulfate-laden wastewater? [J]. International Biodeterioration & Biodegradation, 2018, 126: 37-44. DOI: 10.1016/j.ibiod.2017.08.013. [15] JIANG Y R, LI H, QIN Y L, et al. Spatial separation and bio-chain cooperation between sulfidogenesis and methanogenesis in an anaerobic baffled reactor with sucrose as the carbon source[J]. International Biodeterioration & Biodegradation, 2019, 138: 99-105. DOI: 10.1016/j.ibiod.2019.01.004. [16] SAHINKAYA E, YUCESOY Z. Biotreatment of acidic zinc- and copper-containing wastewater using ethanol-fed sulfidogenic anaerobic baffled reactor[J]. Bioprocess and Biosystems Engineering, 2010, 33(8): 989-997. DOI: 10.1007/s00449-010-0423-9. [17] 崔福斋. 生物矿化[M]. 北京:清华大学出版社, 2007:325. [18] LABRENZ M, DRUSCHEL G K, THOMSEN-EBERT T, et al. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria[J]. Science, 2000, 290(5497): 1744-1747. DOI: 10.1126/science.290.5497.1744. [19] ZHANG H Z, BANFIELD J F. Aggregation, coarsening, and phase transformation in ZnS nanoparticles studied by molecular dynamics simulations[J]. Nano Letters, 2004, 4(4): 713-718. DOI: 10.1021/nl035238a. [20] GARCÍA C, MORENO D A, BALLESTER A, et al. Bioremediation of an industrial acid mine water by metal-tolerant sulphate-reducing bacteria[J]. Minerals Engineering, 2001, 14(9): 997-1008. DOI: 10.1016/S0892-6875(01)00107-8. [21] 王大为, 毕春梦, 秦永丽, 等. 硫酸盐还原活性污泥矿化固定酸性矿山废水中的镉[J]. 化工进展, 2023, 42(10): 5509-5519. DOI: 10.16085/j.issn.1000-6613.2022-2222. [22] JIANG Y R, ZHANG J, WEN Q M, et al. Up-flow anaerobic column reactor for sulfate-rich cadmium-bearing wastewater purification: system performance, removal mechanism and microbial community structure[J]. Biodegradation, 2022, 33(3): 239-253. DOI: 10.1007/s10532-022-09983-0. [23] ASSOCIATION C, WASHINGTON D. APHA, A. P. H. A. : Standard methods for the examination of water and wastewater[J]. American Physical Education Review, 1995, 24(9): 481-486. [24] 陈中云, 闵航, 吴伟祥. 水稻田土壤硫酸盐还原活性的测定及其影响因子的研究[J]. 土壤通报, 2003,34(5): 455-458. DOI: 10.3321/j.issn:0564-3945.2003.05.018. [25] ALBORÉS A F, CID B P, GÓMEZ E F, et al. Comparison between sequential extraction procedures and single extractions for metal partitioning in sewage sludge samples[J]. Analyst, 2000, 125(7): 1353-1357. DOI: 10.1039/b001983f. [26] 肖飞, 丁旭升, 樊培培, 等. 基于高通量测序技术研究环境微生物群落结构特征[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 175-189. DOI: 10.16088/j.issn.1001-6600.2021111702. [27] 钟晓兰, 周生路, 黄明丽, 等. 土壤重金属的形态分布特征及其影响因素[J]. 生态环境学报, 2009, 18(4): 1266-1273. DOI: 10.3969/j.issn.1674-5906.2009.04.013. [28] 戴友芝, 施汉昌, 冀静平,等. 厌氧折流板反应器处理有毒废水及其污泥特性的研究[J]. 环境科学学报, 2000, 20(3): 284-289. DOI: 10.13671/j.hjkxxb.2000.03.006. [29] 袁乙卜, 张建民, 陈希, 等. 大分子有机物作用下胞外聚合物对除磷污泥颗粒化的影响[J]. 环境工程学报, 2021, 15(4): 1321-1332. DOI: 10.12030/j.cjee.202010101. [30] MAHTO K U, VANDAN A, PRIYADARSHANEE M, et al. Bacterial biofilm and extracellular polymeric substances in the treatment of environmental pollutants: beyond the protective role in survivability[J]. Journal of Cleaner Production, 2022, 379: 134759. DOI: 10.1016/j.jclepro.2022.134759. [31] DO H, CHE C, ZHAO Z J, et al. Extracellular polymeric substance from Rahnella sp. LRP3 converts available Cu into Cu5(PO4)2(OH)4 in soil through biomineralization process[J]. Environmental Pollution, 2020, 260: 114051. DOI: 10.1016/j.envpol.2020.114051. [32] LIN Q, WANG J S, FU S Y, et al. Elemental sulfur in northern South China Sea sediments and its significance[J]. Science China Earth Sciences, 2015, 58(12): 2271-2278. DOI: 10.1007/s11430-015-5182-7. [33] 谢巧勤, 陈天虎, 范子良, 等. 铜陵新桥硫铁矿床中胶状黄铁矿微尺度观察及其成因探讨[J]. 中国科学:地球科学, 2014, 44(12): 2665-2674. [34] YALIKUN Y, XUE C J, DAI Z J, et al. Microbial structures and possible bacterial sulfide fossils in the giant Jinding Zn-Pb deposit, Yunnan, SW-China: insights into the genesis of Zn-Pb sulfide mineralization[J]. Ore Geology Reviews, 2018, 92: 61-72. DOI: 10.1016/j.oregeorev.2017.11.004. [35] PICARD A, GARTMAN A, CLARKE D R, et al. Sulfate-reducing bacteria influence the nucleation and growth of mackinawite and greigite[J]. Geochimica et Cosmochimica Acta, 2018, 220: 367-384. DOI: 10.1016/j.gca.2017.10.006. [36] JIANG N, FENG Y Q, HUANG Q, et al. Effect of environmental pH on mineralization of anaerobic iron-oxidizing bacteria [J]. Frontiers in Microbiology, 2022, 13: 885098. DOI: 10.3389/fmicb.2022.885098. [37] HAN X H, TOMASZEWSKI E J, SORWAT J, et al. Effect of microbial biomass and humic acids on abiotic and biotic magnetite formation[J]. Environmental Science & Technology, 2020, 54(7): 4121-4130. DOI: 10.1021/acs.est.9b07095. [38] 欧正, 韦重韬, SANTIGIE K S, 等.广西下巴铅锌矿床镉元素的富集规律研究[J]. 有色金属(矿山部分), 2013, 65(1): 57-61. DOI: 10.3969/j.issn.1671-4172.2013.01.014. [39] FRANCIS A J, DODGE C J, GILLOW J B et al. Reductive dissolution of Pu(IV) by Clostridium sp. under anaerobic conditions[J]. Environmental Science & Technology, 2008, 42(7): 2355-2360. DOI: 10.1021/es072016w. [40] GUPTA R S, GAO B L. Phylogenomic analyses of clostridia and identification of novel protein signatures that are specific to the genus Clostridium sensu stricto (cluster I) [J]. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(2): 285-294. DOI: 10.1099/ijs.0.001792-0. [41] MENG X H, CAO Q, SUN Y, et al. 16S rRNA genes- and metagenome-based confirmation of syntrophic butyrate-oxidizing methanogenesis enriched in high butyrate loading[J]. Bioresource Technology, 2022, 345: 126483. DOI: 10.1016/j.biortech.2021.126483. [42] STEFANIE J W H, ELFERINK O, VISSER A, et al. Sulfate reduction in methanogenic bioreactors[J]. FEMS Microbiology Reviews, 1994, 15(2/3): 119-136. DOI: 10.1016/0168-6445(94)90108-2. [43] 姬玉欣, 马春, 金仁村, 等. 硫酸盐生物还原中电子供体的选择[J]. 化工进展, 2011, 30(12): 2593-2600. DOI: 10.16085/j.issn.1000-6613.2011.12.039. [44] 汪晨祥, 秦永丽, 蒋永荣, 等. ABR产酸-硫酸盐还原相颗粒污泥富集PHAs产生菌[J]. 化工进展, 2023, 42(12): 6658-6665. DOI: 10.16085/j.issn.1000-6613.2023-0203. [45] LI Z, LOU Y, DING J, et al. Metabolic regulation of ethanol-type fermentation of anaerobic acidogenesis at different pH based on transcriptome analysis of Ethanoligenens harbinense[J]. Biotechnology for Biofuels, 2020, 13: 101.DOI: 10.1186/s13068-020-01740-w. [46] KARNACHUK O V, MARDANOV A V, AVAKYAN M R, et al. Draft genome sequence of the first acid-tolerant sulfate-reducing deltaproteobacterium Desulfovibrio sp. TomC having potential for minewater treatment[J]. FEMS Microbiology Letters, 2015, 362(4): 1-3. DOI: 10.1093/femsle/fnv007. [47] BERGEY D H, HOLT J G. Bergey’s manual of determinative bacteriology[M]. 9th ed.Baltimore: Williams & Wilkins, 1994. [48] YUAN T G, KO J H, ZHOU L L, et al. Iron oxide alleviates acids stress by facilitating syntrophic metabolism between Syntrophomonas and methanogens[J]. Chemosphere, 2020, 247: 125866. DOI: 10.1016/j.chemosphere.2020.125866. [49] AMEEN F A, HAMDAN A M, EL-NAGGAR M Y. Assessment of the heavy metal bioremediation efficiency of the novel marine lactic acid bacterium, Lactobacillus plantarum MF042018[J]. Scientific Reports, 2020, 10(1): 314. DOI: 10.1038/s41598-019-57210-3. [50] XUE Z F, CHENG W C, WANG L, et al. Effect of a harsh circular environment on self-healing microbial-induced calcium carbonate materials for preventing Pb2+ migration[J]. Environmental Technology & Innovation, 2023, 32: 103380. DOI: 10.1016/j.eti.2023.103380. [51] TOURNEY J, NGWENYA B T. The role of bacterial extracellular polymeric substances in geomicrobiology[J]. Chemical Geology, 2014, 386: 115-132. DOI: 10.1016/j.chemgeo.2014.08.011. [52] WEN L M, HUANG L Y, WANG Y, et al. Facet-engineered hematite boosts microbial electrogenesis by synergy of promoting electroactive biofilm formation and extracellular electron transfer[J]. Science of The Total Environment, 2022, 819: 153154. DOI: 10.1016/j.scitotenv.2022.153154. [53] 唐琳钦, 王安柳, 宿程远, 等. 不同氮源对好氧颗粒污泥理化特性及微生物群落影响[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 144-153. DOI: 10.16088/j.issn.1001-6600.2020061301. [54] ZENG W M, LI F, WU C C, et al. Role of extracellular polymeric substance (EPS) in toxicity response of soil bacteria Bacillus sp. S3 to multiple heavy metals[J]. Bioprocess and Biosystems Engineering, 2020, 43(1): 153-167. DOI: 10.1007/s00449-019-02213-7. |
[1] | 王琳清, 鄢韬, 陈永坚, 李富荣, 王旭, 李文英, 杜瑞英, 杨秀丽. 不同水分条件下施用调理剂对土壤铅镉的钝化效应[J]. 广西师范大学学报(自然科学版), 2023, 41(4): 231-242. |
[2] | 赵珂艺, 张宁宁, 薛洁怡, 李广娈, 李艺, 于方明, 刘可慧. 重金属超富集植物研究CiteSpace可视化分析[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 191-209. |
[3] | 彭丽梅, 赵理, 周悟, 胡月明. 广州市从化区耕地土壤重金属风险评价[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 118-129. |
[4] | 徐婷婷, 余秋平, 漆培艺, 刘可慧, 李艺, 蒋永荣, 于方明. 不同淋洗剂对矿区土壤重金属解吸的影响[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 188-193. |
[5] | 郑海霞, 王月, 陈芬, 勾朝阳, 郑庆荣. 五台山南台土壤重金属特征及污染风险评价[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 99-107. |
[6] | 冯修, 马楠楠, 职红涛, 韩双乔, 张翔. 重金属捕集剂UDTC对低浓度镉废水的处理研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 63-67. |
[7] | 陈春强,邓 华,陈小梅. 广西3个锰矿恢复区农作物重金属健康风险评价[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 127-135. |
[8] | 陈春强, 邓华, 黄芳芳. 广西桂平锰矿区土壤重金属含量及形态分析[J]. 广西师范大学学报(自然科学版), 2014, 32(4): 108-114. |
[9] | 张俊, 黎道洪, 杜典松. 贵州龙井洞和白龙洞裸灶螽对重金属的富集[J]. 广西师范大学学报(自然科学版), 2012, 30(4): 104-109. |
[10] | 唐宇庭, 黄佳玉, 王维生, 张超兰. 低分子有机酸对油菜吸收Cd和Zn的影响[J]. 广西师范大学学报(自然科学版), 2012, 30(2): 127-131. |
[11] | 邓华, 许丹丹, 李明顺, 李金城. 不同消解方法分析土壤中重金属含量的比较[J]. 广西师范大学学报(自然科学版), 2010, 28(3): 80-83. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 10
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 61
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |