|
广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (6): 1-15.doi: 10.16088/j.issn.1001-6600.2024070701
• “污水处理”专栏 • 下一篇
王淑颖1,2, 卢宇翔1,2*, 董淑彤2, 陈默2, 康秉娅2, 蒋长兰2, 宿程远1,2
WANG Shuying1,2, LU Yuxiang1,2*, DONG Shutong2, CHEN Mo2, KANG Bingya2, JIANG Zhanglan2, SU Chengyuan1,2
摘要: 抗生素的广泛使用迅速增加了抗生素耐药细菌(antibiotic-resistant bacteria, ARB)及其相关抗生素抗性基因(antibiotic resistance genes, ARGs)的流行率,对全球人口构成了巨大的环境挑战和高健康风险。含有未经处理的抗生素废水及城市污水处理厂(wastewater treatment plant, WWTP)是ARGs和ARB产生和传播的关键热点,对人类和动物健康造成严重后果,同时威胁着生态安全。本文综述ARGs在污水中的发生和风险,并列举ARGs传播的主要途径和潜在影响,通过文献计量手段对ARGs的削减技术进行统计,为有效控制ARGs提供重要启示并对去除废水中ARGs的处理工艺进行批判性讨论。最后,总结复合污染促使ARGs产生的热门话题,为综合污染提供未来的研究方向和解决方案。
中图分类号: X703.1
[1] LI T, WANG Z L, GUO J H, et al. Bacterial resistance to antibacterial agents: mechanisms, control strategies, and implications for global health[J]. Science of the Total Environment, 2023, 860: 160461. DOI: 10.1016/j.scitotenv.2022.160461. [2] 梁任山,俸祥仁,刘婷婷,等.复合中药代替抗生素治疗猪气喘病的研究[J].广西师范大学学报(自然科学版),2013,31(3):209-212.DOI: 10.3969/j.issn.1001-6600.2013.03.033. [3] WANG G G, ZHOU S H, HAN X K, et al. Occurrence, distribution, and source track of antibiotics and antibiotic resistance genes in the main rivers of Chongqing city, southwest China[J]. Journal of Hazardous Materials, 2020, 389: 122110. DOI: 10.1016/j.jhazmat.2020.122110. [4] HOSSAIN A, NAKAMICHI S, HABIBULLAH-AL-MAMUN M, et al. Occurrence, distribution, ecological and resistance risks of antibiotics in surface water of finfish and shellfish aquaculture in Bangladesh[J]. Chemosphere, 2017, 188: 329-336. DOI: 10.1016/j.chemosphere.2017.08.152. [5] MARTINEZ J L. The role of natural environments in the evolution of resistance traits in pathogenic bacteria[J]. Proceedings of the Royal Society B, 2009, 276(1667): 2521-2530. DOI: 10.1098/rspb.2009.0320. [6] YAN Q, ZHONG Z Z, LI X Y, et al. Characterization of heavy metal, antibiotic pollution, and their resistance genes in paddy with secondary municipal-treated wastewater irrigation[J]. Water Research, 2024, 252: 121208. DOI: 10.1016/j.watres.2024.121208. [7] CHENG Y, LU J R, FU S S, et al. Enhanced propagation of intracellular and extracellular antibiotic resistance genes in municipal wastewater by microplastics[J]. Environmental Pollution, 2022, 292(Part A): 118284. DOI: 10.1016/j.envpol.2021.118284. [8] ZHU S Y, YANG B Q, WANG Z Q, et al. Augmented dissemination of antibiotic resistance elicited by non-antibiotic factors[J]. Ecotoxicology and Environmental Safety, 2023, 262: 115124. DOI: 10.1016/j.ecoenv.2023.115124. [9] QIN K N, WEI L L, LI J J, et al. A review of ARGs in WWTPs: sources, stressors and elimination[J]. Chinese Chemical Letters, 2020, 31(10): 2603-2613. DOI: 10.1016/j.cclet.2020.04.057. [10] WANG Y, HAN Y P, LI L, et al. Distribution, sources, and potential risks of antibiotic resistance genes in wastewater treatment plant: a review[J]. Environmental Pollution, 2022, 310: 119870. DOI: 10.1016/j.envpol.2022.119870. [11] XIAO R H, HUANG D L, DU L, et al. Antibiotic resistance in soil-plant systems: a review of the source, dissemination, influence factors, and potential exposure risks[J]. Science of the Total Environment, 2023, 869: 161855. DOI: 10.1016/j.scitotenv.2023.161855. [12] WANG F, FU Y H, SHENG H J, et al. Antibiotic resistance in the soil ecosystem: a one health perspective[J]. Current Opinion in Environmental Science & Health, 2021, 20: 100230. DOI: 10.1016/j.coesh.2021.100230. [13] LI S N, ONDON B S, HO S H, et al. Emerging soil contamination of antibiotics resistance bacteria (ARB) carrying genes (ARGs): new challenges for soil remediation and conservation[J]. Environmental Research, 2023, 219: 115132. DOI: 10.1016/j.envres.2022.115132. [14] ZAINAB S M, JUNAID M, XU N, et al. Antibiotics and antibiotic resistant genes (ARGs) in groundwater: a global review on dissemination, sources, interactions, environmental and human health risks[J]. Water Research, 2020, 187: 116455. DOI: 10.1016/j.watres.2020.116455. [15] BEN Y J, FU C X, HU M, et al. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: a review[J]. Environmental Research, 2019, 169: 483-493. DOI: 10.1016/j.envres. 2018.11.040. [16] CHI T, ZHANG A G, ZHANG X F, et al. Characteristics of the antibiotic resistance genes in the soil of medical waste disposal sites[J]. Science of the Total Environment, 2020, 730: 139042. DOI: 10.1016/j.scitotenv.2020.139042. [17] LI S N, ZHANG C F, LI F X, et al. Technologies towards antibiotic resistance genes (ARGs) removal from aquatic environment: a critical review[J]. Journal of Hazardous Materials, 2021, 411: 125148. DOI: 10.1016/j.jhazmat. 2021.125148. [18] LI W Y, ZHANG G S. Detection and various environmental factors of antibiotic resistance gene horizontal transfer[J]. Environmental Research, 2022, 212(Part B): 113267. DOI: 10.1016/j.envres.2022.113267. [19] MORALEZ J, SZENKIEL K, HAMILTON K, et al. Quantitative analysis of horizontal gene transfer in complex systems[J]. Current Opinion in Microbiology, 2021, 62: 103-109. DOI: 10.1016/j.mib.2021.05.001. [20] CORNO G, GHALY T, SABATINO R, et al. Class 1 integron and related antimicrobial resistance gene dynamics along a complex freshwater system affected by different anthropogenic pressures[J]. Environmental Pollution, 2023, 316(Part 2): 120601. DOI: 10.1016/j.envpol.2022.120601. [21] SUN X F, WANG X C, HAN Q, et al. Bibliometric analysis of papers on antibiotic resistance genes in aquatic environments on a global scale from 2012 to 2022: evidence from universality, development and harmfulness[J]. Science of the Total Environment, 2024, 909: 168597. DOI: 10.1016/j.scitotenv.2023.168597. [22] 洪铭媛,李清彪,邓旭.废水厌氧(水解):好氧生物组合处理工艺研究进展[J].化工环保,2005,25(2):104-109.DOI: 10.3969/j.issn.1006-1878.2005.02.007. [23] WANG K M, ZHOU L X, MENG S H, et al. Anaerobic membrane bioreactor for real antibiotic pharmaceutical wastewater treatment: positive effect of fouling layer on antibiotics and antibiotic resistance genes removals[J]. Journal of Cleaner Production, 2023, 409: 137234. DOI: 10.1016/j.jclepro.2023.137234. [24] ZHU Y J, WANG Y Y, ZHOU S, et al. Robust performance of a membrane bioreactor for removing antibiotic resistance genes exposed to antibiotics: role of membrane foulants[J]. Water Research, 2018, 130: 139-150. DOI: 10.1016/j.watres.2017.11.067. [25] KORZENIEWSKA E, HARNISZ M. Relationship between modification of activated sludge wastewater treatment and changes in antibiotic resistance of bacteria[J]. Science of the Total Environment, 2018, 639: 304-315. DOI: 10.1016/j.scitotenv.2018.05.165. [26] 钱燕云,郑吉,徐莉柯,等.温度对厌氧环境下污泥中抗生素抗性基因行为特征的影响[J].生态毒理学报,2015,10(5):56-65.DOI: 10.7524/AJE.1673-5897.20151011001. [27] 杨文静,邓钰莲,陈铸鑫,等.环丙沙星对厌氧反应器处理含磷废水效能及微生物群落响应的影响[J].广西师范大学学报(自然科学版),2023,41(6):158-168.DOI: 10.16088/j.issn.1001-6600.2022123001. [28] 覃容华,宿程远,陆欣雅,等.Cr(Ⅵ)浓度对MFC-颗粒污泥耦合体系运行效能及微生态的影响[J].广西师范大学学报(自然科学版),2023,41(3):242-254.DOI: 10.16088/j.issn.1001-6600.2022040403. [29] YU Z H, ZHANG X B, NGO H H, et al. Removal and degradation mechanisms of sulfonamide antibiotics in a new integrated aerobic submerged membrane bioreactor system[J]. Bioresource Technology, 2018, 268: 599-607. DOI: 10.1016/j.biortech.2018.08.028. [30] FANG H S, ZHANG Q, NIE X P, et al. Occurrence and elimination of antibiotic resistance genes in a long-term operation integrated surface flow constructed wetland[J]. Chemosphere, 2017, 173: 99-106. DOI: 10.1016/j.chemosphere.2017.01.027. [31] CHEN J, YING G G, WEI X D, et al. Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: effect of flow configuration and plant species[J]. Science of the Total Environment, 2016, 571: 974-982. DOI: 10.1016/j.scitotenv.2016.07.085. [32] HUANG X, ZHENG J L, LIU C X, et al. Removal of antibiotics and resistance genes from swine wastewater using vertical flow constructed wetlands: effect of hydraulic flow direction and substrate type[J]. Chemical Engineering Journal, 2017, 308: 692-699. DOI: 10.1016/j.cej.2016.09.110. [33] ZHANG L, YAN C Z, WEN C, et al. Influencing factors of antibiotic resistance genes removal in constructed wetlands: a meta-analysis assisted by multivariate statistical methods[J]. Chemosphere, 2023, 315: 137755. DOI: 10.1016/j.chemosphere.2023.137755. [34] BLANCO J A. Suitability of totora (Schoenoplectus californicus (C.A. Mey.) Soják) for its use in constructed wetlands in areas polluted with heavy metals[J]. Sustainability, 2019, 11(1): 19. DOI: 10.3390/su11010019. [35] ZHANG L, YAN C Z, QI R, et al. Quantifying the contribution rates of sulfonamide antibiotics removal mechanisms in constructed wetlands using multivariate statistical analysis[J]. Environmental Pollution, 2022, 292(Part B): 118463. DOI: 10.1016/j.envpol.2021.118463. [36] CUI E P, ZHOU Z C, GAO F, et al. Roles of substrates in removing antibiotics and antibiotic resistance genes in constructed wetlands: a review[J]. Science of the Total Environment, 2023, 859(Part 1): 160257. DOI: 10.1016/j.scitotenv.2022.160257. [37] YI X Z, TRAN N H, YIN T R, et al. Removal of selected PPCPs, EDCs, and antibiotic resistance genes in landfill leachate by a full-scale constructed wetlands system[J]. Water Research, 2017, 121: 46-60. DOI: 10.1016/j.watres. 2017.05.008. [38] DAI M X, ZHANG Y J, WU Y M, et al. Mechanism involved in the treatment of sulfamethoxazole in wastewater using a constructed wetland microbial fuel cell system[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106193. DOI: 10.1016/j.jece.2021.106193. [39] 尹理亚,丁开,杜文泽,等.金属/非金属和氮共掺杂生物炭的制备及其在有机污水处理中的应用进展[J].广西师范大学学报(自然科学版),2024,42(1):9-17.DOI: 10.16088/j.issn.1001-6600.2023032702. [40] DU L Q, AHMAD S, LIU L N, et al. A review of antibiotics and antibiotic resistance genes (ARGs) adsorption by biochar and modified biochar in water[J]. Science of the Total Environment, 2023, 585(Part 2): 159815. DOI: 10.1016/j.scitotenv.2022.159815. [41] SUN W, GU J, WANG X J, et al. Impacts of biochar on the environmental risk of antibiotic resistance genes and mobile genetic elements during anaerobic digestion of cattle farm wastewater[J]. Bioresource Technology, 2018, 256: 342-349. DOI: 10.1016/j.biortech.2018.02.052. [42] HU F Y, GAO C C, WANG B Y, et al. Effects of chicken manure-modified biochar on the adsorption capacity of tetracycline and abundance of antibiotic resistance genes in soil[J]. Land Degradation & Development, 2024, 35(3): 1224-1233. DOI: 10.1002/ldr.4983. [43] YE M, SUN M M, FENG Y F, et al. Effect of biochar amendment on the control of soil sulfonamides, antibiotic-resistant bacteria, and gene enrichment in lettuce tissues[J]. Journal of Hazardous Materials, 2016, 309: 219-227. DOI: 10.1016/j.jhazmat.2015.10.074. [44] LU X Y, HOU J, YANG K, et al. Binding force and site-determined desorption and fragmentation of antibiotic resistance genes from metallic nanomaterials[J]. Environmental Science & Technology, 2021, 55(13): 9305-9316. DOI: 10.1021/acs.est.1c02047. [45] ZHANG Q R, ZHOU H X, JIANG P, et al. Silver nanoparticles facilitate phage-borne resistance gene transfer in planktonic and microplastic-attached bacteria[J]. Journal of Hazardous Materials, 2024, 469: 133942. DOI: 10.1016/j.jhazmat.2024.133942. [46] CUI E P, GAO F, LIU Y, et al. Amendment soil with biochar to control antibiotic resistance genes under unconventional water resources irrigation: proceed with caution[J]. Environmental Pollution, 2018, 240: 475-484. DOI: 10.1016/j.envpol.2018.04.143. [47] STANGE C, SIDHU J P S, TOZE S, et al. Comparative removal of antibiotic resistance genes during chlorination, ozonation, and UV treatment[J]. International Journal of Hygiene and Environmental Health, 2019, 222(3): 541-548. DOI: 10.1016/j.ijheh.2019.02.002. [48] FOROUGHI M, KHIADANI M, KAKHKI S, et al. Effect of ozonation-based disinfection methods on the removal of antibiotic resistant bacteria and resistance genes (ARB/ARGs) in water and wastewater treatment: a systematic review[J]. Science of the Total Environment, 2022, 811: 151404. DOI: 10.1016/j.scitotenv.2021.151404. [49] BAGHAL ASGHARI F, DEHGHANI M H, DEHGHANZADEH R, et al. Performance evaluation of ozonation for removal of antibiotic-resistant Escherichia coli and Pseudomonas aeruginosa and genes from hospital wastewater[J]. Scientific Reports, 2021, 11(1): 24519. DOI: 10.1038/s41598-021-04254-z. [50] PING Q, YAN T T, WANG L, et al. Insight into using a novel ultraviolet/peracetic acid combination disinfection process to simultaneously remove antibiotics and antibiotic resistance genes in wastewater: mechanism and comparison with conventional processes[J]. Water Research, 2022, 210: 118019. DOI: 10.1016/j.watres.2021.118019. [51] GILCA A F, TEODOSIU C, FIORE S, et al. Emerging disinfection byproducts: a review on their occurrence and control in drinking water treatment processes[J]. Chemosphere, 2020, 259: 127476. DOI: 10.1016/j.chemosphere. 2020.127476. [52] CAI Y W, SUN T, LI G Y, et al. Traditional and emerging water disinfection technologies challenging the control of antibiotic-resistant bacteria and antibiotic resistance genes[J]. ACS ES&T Engineering, 2021, 1(7): 1046-1064. DOI: 10.1021/acsestengg.1c00110. [53] YE C S, FENG M B, CHEN Y Q, et al. Dormancy induced by oxidative damage during disinfection facilitates conjugation of ARGs through enhancing efflux and oxidative stress: a lagging response[J]. Water Research, 2022, 221: 118798. DOI: 10.1016/j.watres.2022.118798. [54] DODD M C. Potential impacts of disinfection processes on elimination and deactivation of antibiotic resistance genes during water and wastewater treatment[J]. Journal of Environmental Monitoring, 2012, 14(7): 1754-1771. DOI: 10.1039/c2em00006g. [55] YANG Z H, SU R K, LUO S, et al. Comparison of the reactivity of ibuprofen with sulfate and hydroxyl radicals: an experimental and theoretical study[J]. Science of the Total Environment, 2017, 590-591: 751-760. DOI: 10.1016/j.scitotenv.2017.03.039. [56] YANG J R, ZENG D Q, LI J, et al. A highly efficient Fenton-like catalyst based on isolated diatomic Fe-Co anchored on N-doped porous carbon[J]. Chemical Engineering Journal, 2021, 404: 126376. DOI: 10.1016/j.cej.2020.126376. [57] SANGANYADO E, GWENZI W. Antibiotic resistance in drinking water systems: occurrence, removal, and human health risks[J]. Science of the Total Environment, 2019, 669: 785-797. DOI: 10.1016/j.scitotenv.2019.03.162. [58] DONG G H, CHEN B, LIU B, et al. Comparison of O3, UV/O3, and UV/O3/PS processes for marine oily wastewater treatment: degradation performance, toxicity evaluation, and flocs analysis[J]. Water Research, 2022, 226: 119234. DOI: 10.1016/j.watres.2022.119234. [59] HERRAIZ-CARBONÉ M, COTILLAS S, LACASA E, et al. A review on disinfection technologies for controlling the antibiotic resistance spread[J]. Science of the Total Environment, 2021, 797: 149150. DOI: 10.1016/j.scitotenv.2021.149150. [60] LI H N, ZHANG Z G, DUAN J T, et al. Electrochemical disinfection of secondary effluent from a wastewater treatment plant: removal efficiency of ARGs and variation of antibiotic resistance in surviving bacteria[J]. Chemical Engineering Journal, 2020, 392: 123674. DOI: 10.1016/j.cej.2019.123674. [61] COSTA F C R, DOS SANTOS C R, AMARAL M C S. Trace organic contaminants removal by membrane distillation: a review on mechanisms, performance, applications, and challenges[J]. Chemical Engineering Journal, 2023, 464: 142461. DOI: 10.1016/j.cej.2023.142461. [62] LIANG C Y, WEI D, ZHANG S Y, et al. Removal of antibiotic resistance genes from swine wastewater by membrane filtration treatment[J]. Ecotoxicology and Environmental Safety, 2021, 210: 111885. DOI: 10.1016/j.ecoenv.2020.111885. [63] ADAMS C, WANG Y, LOFTIN K, et al. Removal of antibiotics from surface and distilled water in conventional water treatment processes[J]. Journal of Environmental Engineering, 2002, 128(3): 253-260. DOI: 10.1061/(ASCE)0733-9372(2002)128:3(253). [64] KOŠUTIĆ K, DOLAR D, AŠPERGER D, et al. Removal of antibiotics from a model wastewater by RO/NF membranes[J]. Separation and Purification Technology, 2007, 53(3): 244-249. DOI: 10.1016/j.seppur.2006.07.015. [65] LI J H, QIU X, REN S J, et al. High performance electroactive ultrafiltration membrane for antibiotic resistance removal from wastewater effluent[J]. Journal of Membrane Science, 2023, 672: 121429. DOI: 10.1016/j.memsci.2023.121429. [66] LI B, QIU Y, LI J, et al. Removal of antibiotic resistance genes in four full-scale membrane bioreactors[J]. Science of the Total Environment, 2019, 653: 112-119. DOI: 10.1016/j.scitotenv.2018.10.305. [67] MICHAEL S G, MICHAEL-KORDATOU I, BERETSOU V G, et al. Solar photo-Fenton oxidation followed by adsorption on activated carbon for the minimisation of antibiotic resistance determinants and toxicity present in urban wastewater[J]. Applied Catalysis B: Environmental, 2019, 244: 871-880. DOI: 10.1016/j.apcatb.2018.12.030. [68] CHEN P P, YU X F, ZHANG J Y, et al. New and traditional methods for antibiotic resistance genes removal: constructed wetland technology and photocatalysis technology[J]. Frontiers in Microbiology, 2022, 13: 1110793. DOI: 10.3389/fmicb.2022.1110793. [69] WANG J Y, HUO L X, BIAN K Q, et al. Efficacy and mechanism of antibiotic resistance gene degradation and cell membrane damage during ultraviolet advanced oxidation processes[J]. ACS ES&T Water, 2024, 4(6): 2746-2755. DOI: 10.1021/acsestwater.4c00350. [70] CARUSO G. Microplastics as vectors of contaminants[J]. Marine Pollution Bulletin, 2019, 146: 921-924. DOI: 10.1016/j.marpolbul.2019.07.052. [71] SYRANIDOU E, KALOGERAKIS N. Interactions of microplastics, antibiotics and antibiotic resistant genes within WWTPs[J]. Science of the Total Environment, 2022, 804: 150141. DOI: 10.1016/j.scitotenv.2021.150141. [72] ZHANG Y X, LU J, WU J, et al. Potential risks of microplastics combined with superbugs: enrichment of antibiotic resistant bacteria on the surface of microplastics in mariculture system[J]. Ecotoxicology and Environmental Safety, 2020, 187: 109852. DOI: 10.1016/j.ecoenv.2019.109852. [73] WANG S S, XUE N N, LI W F, et al. Selectively enrichment of antibiotics and ARGs by microplastics in river, estuary and marine waters[J]. Science of the Total Environment, 2020, 708: 134594. DOI: 10.1016/j.scitotenv. 2019.134594. [74] SØRENSEN S J, BAILEY M, HANSEN L H, et al. Studying plasmid horizontal transfer in situ: a critical review[J]. Nature Reviews Microbiology, 2005, 3(9): 700-710. DOI: 10.1038/nrmicro1232. [75] LI B, YANG Y, MA L P, et al. Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes[J]. The ISME Journal, 2015, 9(11): 2490-2502. DOI: 10.1038/ismej.2015.59. [76] YANG Y Y, LIU G H, SONG W J, et al. Plastics in the marine environment are reservoirs for antibiotic and metal resistance genes[J]. Environment International, 2019, 123: 79-86. DOI: 10.1016/j.envint.2018.11.061. [77] PHAM D N, CLARK L, LI M Y. Microplastics as hubs enriching antibiotic-resistant bacteria and pathogens in municipal activated sludge[J]. Journal of Hazardous Materials Letters, 2021, 2: 100014. DOI: 10.1016/j.hazl.2021.100014. [78] LIU Q W, LI Y X, SUN Y N, et al. Deterioration of sludge characteristics and promotion of antibiotic resistance genes spread with the co-existing of polyvinylchloride microplastics and tetracycline in the sequencing batch reactor[J]. Science of the Total Environment, 2024, 906: 167544. DOI: 10.1016/j.scitotenv.2023.167544. [79] ZHOU S, ZHU Y J, YAN Y, et al. Deciphering extracellular antibiotic resistance genes (eARGs) in activated sludge by metagenome[J]. Water Research, 2019, 161: 610-620. DOI: 10.1016/j.watres.2019.06.048. [80] LUO T Y, DAI X H, CHEN Z J, et al. Different microplastics distinctively enriched the antibiotic resistance genes in anaerobic sludge digestion through shifting specific hosts and promoting horizontal gene flow[J]. Water Research, 2023, 228(Part A): 119356. DOI: 10.1016/j.watres.2022.119356. [81] DAI H H, GAO J F, WANG Z Q, et al. Behavior of nitrogen, phosphorus and antibiotic resistance genes under polyvinyl chloride microplastics pressures in an aerobic granular sludge system[J]. Journal of Cleaner Production, 2020, 256: 120402. DOI: 10.1016/j.jclepro.2020.120402. [82] ZHANG B, HE Y K, SHI W X, et al. Biotransformation of sulfamethoxazole (SMX) by aerobic granular sludge: removal performance, degradation mechanism and microbial response[J]. Science of the Total Environment, 2023, 858(Part 1): 159771. DOI: 10.1016/j.scitotenv.2022.159771. [83] ROLSKY C, KELKAR V, DRIVER E, et al. Municipal sewage sludge as a source of microplastics in the environment[J]. Current Opinion in Environmental Science & Health, 2020, 14: 16-22. DOI: 10.1016/j.coesh.2019.12.001. [84] LU J, WANG Y, JIN M, et al. Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes[J]. Water Research, 2020, 169: 115229. DOI: 10.1016/j.watres.2019.115229. [85] ZHANG Y, GU A Z, CEN T Y, et al. Sub-inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in water environment[J]. Environmental Pollution, 2018, 237: 74-82. DOI: 10.1016/j.envpol.2018.01.032. [86] SUN F L, XU Z T, FAN L L. Response of heavy metal and antibiotic resistance genes and related microorganisms to different heavy metals in activated sludge[J]. Journal of Environmental Management, 2021, 300: 113754. DOI: 10.1016/j.jenvman.2021.113754. [87] WANG R, CHEN M X, FENG F, et al. Effects of chlortetracycline and copper on tetracyclines and copper resistance genes and microbial community during swine manure anaerobic digestion[J]. Bioresource Technology, 2017, 238: 57-69. DOI: 10.1016/j.biortech.2017.03.134. [88] GUPTA S K, SHIN H, HAN D, et al. Metagenomic analysis reveals the prevalence and persistence of antibiotic- and heavy metal-resistance genes in wastewater treatment plant[J]. Journal of Microbiology, 2018, 56(6): 408-415. DOI: 10.1007/s12275-018-8195-z. [89] KNAPP C W, MCCLUSKEY S M, SINGH B K, et al. Antibiotic resistance gene abundances correlate with metal and geochemical conditions in archived Scottish soils[J]. PLoS One, 2011, 6(11): e27300. DOI: 10.1371/journal.pone.0027300. [90] ZHENG X L, ZHONG Z Z, XU Y, et al. Response of heavy-metal and antibiotic resistance genes and their related microbe in rice paddy irrigated with treated municipal wastewaters[J]. Science of the Total Environment, 2023, 896: 165249. DOI: 10.1016/j.scitotenv.2023.165249. [91] ZHOU S, YANG F J, WANG W G, et al. Impact of Uranium on antibiotic resistance in activated sludge[J]. Science of the Total Environment, 2024, 917: 170369. DOI: 10.1016/j.scitotenv.2024.170369. [92] WANG Q, LIU L, HOU Z L, et al. Heavy metal copper accelerates the conjugative transfer of antibiotic resistance genes in freshwater microcosms[J]. Science of the Total Environment, 2020, 717: 137055. DOI: 10.1016/j.scitotenv. 2020.137055. [93] ZHAO Q, GUO W Q, LUO H C, et al. Deciphering the transfers of antibiotic resistance genes under antibiotic exposure conditions: driven by functional modules and bacterial community[J]. Water Research, 2021, 205: 117672. DOI: 10.1016/j.watres.2021.117672. [94] LIU C C, ZHU X Y, YOU L H, et al. Per/polyfluoroalkyl substances modulate plasmid transfer of antibiotic resistance genes: a balance between oxidative stress and energy support[J]. Water Research, 2023, 240: 120086. DOI: 10.1016/j.watres.2023.120086. [95] CHEN C L, FANG Y P, CUI X C, et al. Effects of trace PFOA on microbial community and metabolisms: microbial selectivity, regulations and risks[J]. Water Research, 2022, 226: 119273. DOI: 10.1016/j.watres.2022.119273. [96] CHEN C L, FANG Y P, ZHOU D D. Selective pressure of PFOA on microbial community: enrichment of denitrifiers harboring ARGs and the transfer of ferric-electrons[J]. Water Research, 2023, 233: 119813. DOI: 10.1016/j.watres.2023.119813. [97] WANG J, WANG J, ZHAO Z L, et al. PAHs accelerate the propagation of antibiotic resistance genes in coastal water microbial community[J]. Environmental Pollution, 2017, 231(Part 1): 1145-1152. DOI: 10.1016/j.envpol.2017.07.067. [98] LU H, WANG J J, HUANG L P, et al. Effect of immobilized anthraquinone-2-sulfonate on antibiotic resistance genes and microbial community in biofilms of anaerobic reactors[J]. Journal of Environmental Management, 2021, 282: 111967. DOI: 10.1016/j.jenvman.2021.111967. [99] 梁佳怡,王泳森,段敏,等.生物质炭对土壤有效态镉及植物镉吸收影响的整合分析[J].广西师范大学学报(自然科学版),2021,39(6):1-12.DOI: 10.16088/j.issn.1001-6600.2021030502. [100] XIE S Y, HAMID N, ZHANG T T, et al. Unraveling the nexus:microplastics, antibiotics, and ARGs interactions, threats and control in aquaculture:a review[J]. Journal of Hazardous Materials, 2024, 471: 134324. DOI: 10.1016/j.jhazmat.2024.134324. [101] WANG X M, LAN B R, FEI H X, et al. Heavy metal could drive co-selection of antibiotic resistance in terrestrial subsurface soils[J]. Journal of Hazardous Materials, 2021, 411: 124848. DOI: 10.1016/j.jhazmat.2020.124848. [102] CHEN Y J, LI J N, WANG F H, et al. Adsorption of tetracyclines onto polyethylene microplastics: a combined study of experiment and molecular dynamics simulation[J]. Chemosphere, 2021, 265: 129133. DOI: 10.1016/j.chemosphere.2020.129133. [103] TONG F, LIU D, ZHANG Z H, et al. Heavy metal-mediated adsorption of antibiotic tetracycline and ciprofloxacin on two microplastics: insights into the role of complexation[J]. Environmental Research, 2023, 216(Part 3): 114716. DOI: 10.1016/j.envres.2022.114716. [104] RAJPUT P, KUMAR P, PRIYA A K, et al. Nanomaterials and biochar mediated remediation of emerging contaminants[J]. Science of the Total Environment, 2024, 916: 170064. DOI: 10.1016/j.scitotenv.2024.170064. [105] DAVE D, CHAUHAN K, KHIMANI A, et al. Photocatalytic degradation of low-density polythene using protein-coated titania nanoparticles and Lactobacillus plantarum[J]. Environmental Technology, 2023, 44(5): 619-630. DOI: 10.1080/09593330.2021.1980828. |
[1] | 梁任山, 俸祥仁, 刘婷婷, 张杰, 宋德贵. 复合中药代替抗生素治疗猪气喘病的研究[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 209-212. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 122
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 136
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |