2025年04月13日 星期日

广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (6): 30-39.doi: 10.16088/j.issn.1001-6600.2024052903

• “污水处理”专栏 • 上一篇    下一篇

汲取液溶质反向扩散与正渗透中膜污染的相互关系研究

翟思琪1,2,3, 蔡文君1,2,3, 朱苏1,2,3, 李韩龙1,2,3, 宋海亮1,2,3, 杨小丽4, 杨玉立1,2,3*   

  1. 1.南京师范大学 环境学院,江苏 南京 210023;
    2.江苏省环境风险防范与应急技术工程研究中心(南京师范大学),江苏 南京 210023;
    3.江苏省水土生态修复工程实验室(南京师范大学),江苏 南京 210023;
    4.东南大学 土木工程学院,江苏 南京 211189
  • 收稿日期:2024-05-29 修回日期:2024-07-01 出版日期:2024-12-30 发布日期:2024-12-30
  • 通讯作者: 杨玉立(1989—),女,江苏盐城人,南京师范大学副教授,博士。E-mail: ylyang@njnu.edu.cn
  • 基金资助:
    江苏省生态与环境厅研究项目(2022005);国家自然科学基金(51908292)

Dynamic Relationship Between Reverse Solute Flux and Membrane Fouling in Forward Osmosis

ZHAI Siqi1,2,3, CAI Wenjun1,2,3, ZHU Su1,2,3, LI Hanlong1,2,3, SONG Hailiang1,2,3, YANG Xiaoli4, YANG Yuli1,2,3*   

  1. 1. School of Environment, Nanjing Normal University, Nanjing Jiangsu 210023, China;
    2. Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology (Nanjing Normal University), Nanjing Jiangsu 210023, China;
    3. Jiangsu Engineering Lab of Water and Soil Eco-Remediation (Nanjing Normal University), Nanjing Jiangsu 210023, China;
    4. School of Civil Engineering, Southeast University, Nanjing Jiangsu 211189, China
  • Received:2024-05-29 Revised:2024-07-01 Online:2024-12-30 Published:2024-12-30

摘要: 为探究典型无机汲取液的溶质反向扩散(RSF)与膜污染的动态影响关系,从而在实际应用中缓解膜污染问题。本研究选取5种无机汲取液(NaCl、NaHCO3、NaH2PO4、NH4Cl、CaCl2)过滤有机污染物,通过考察系统的渗透性能,表征膜污染层和原料液特性,探究RSF和膜污染间的双向影响。一方面,反向扩散的离子直接与膜污染层结合,如Ca2+易与海藻酸钠交联形成三维网状结构;另一方面,膜污染层抑制Ca2+的反向扩散量(5.8±1.6 mmol·m-2·h-1),促进NH+4的反向扩散量(129.2±12.8 mmol·m-2·h-1),因此,以NH4Cl为汲取液时水回收量(151.4±10.6 g)低于以CaCl2为汲取液时的水回收量(246.4±124.7 g)。此外,RSF改变原料液的性质(Zeta电位、粒径大小等),从而影响膜污染程度。汲取液类型影响膜污染层与RSF间的动态平衡关系,影响系统运行性能。

关键词: 正渗透, 膜污染, 溶质反向扩散, 汲取液, 动态影响

Abstract: Membrane fouling poses a limitation to the application of forward osmosis (FO), and reverse solute flux (RSF) from the draw solutes further reduces the permeability of the membrane. Therefore, this study investigated the dynamic relationship between reverse solute flux and organic membrane fouling using typical inorganic draw solutions (DSs)(NaCl,NaHCO3,NaH2PO4,NH4Cl,CaCl2). On one hand, the reverse solute flux directly interacted with the membrane fouling layer, affecting its configuration. For example, the reverse flux of Ca2+ from CaCl2 draw solute readily crosslinked with sodium alginate (SA), forming a three-dimensional network structure that exacerbated membrane fouling. On the other hand, the formation of membrane fouling reduced the reverse flux of Ca2+ from CaCl2 draw solute (5.8±1.6 mmol·m-2·h-1) while increasing the reverse diffusion of NH+4 from NH4Cl draw solution (129.2±12.8 mmol·m-2·h-1). Consequently, the water recovery using NH4Cl as the draw solute (151.4±10.6 g) was lower than that using CaCl2 (246.4±124.7 g). Furthermore, reverse solute flux altered the properties of the feed solute, leading to the dominance of different filtration mechanisms in the formation of membrane fouling, which subsequently impacts the degree of fouling.

Key words: forward osmosis, membrane fouling, reverse solute flux, draw solute, dynamic relationship

中图分类号:  X52

[1] 郜红娟, 韩会庆, 罗绪强, 等. 贵州土地利用变化对淡水生态系统服务的影响[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 157-163. DOI: 10.16088/j.issn.1001-6600.2020.01.021.
[2] 肖彤, 马捷, 王雁, 等. 铁改性掺氮碳纤维活化过一硫酸盐降解双酚A[J]. 环境科学学报, 2021, 41(7): 2766-2773. DOI: 10.13671/j.hjkxxb.2020.0543.
[3] MENG F G, ZHANG S Q, OH Y, et al. Fouling in membrane bioreactors: an updated review[J]. Water Research, 2017, 114: 151-180. DOI: 10.1016/j.watres.2017.02.006.
[4] WANG X H, CHANG V W C, TANG C Y. Osmotic membrane bioreactor (OMBR) technology for wastewater treatment and reclamation: advances, challenges, and prospects for the future[J]. Journal of Membrane Science, 2016, 504: 113-132. DOI: 10.1016/j.memsci.2016.01.010.
[5] IBRAR I, YADAV S, ALTAEE A, et al. Treatment of biologically treated landfill leachate with forward osmosis: investigating membrane performance and cleaning protcols[J]. Science of the Total Environment, 2020, 744:140901. DOI: 10.1016/j.scitotenv.2020.140901.
[6] 杨望臻, 顾正阳, 龚超, 等. 基于正渗透的水处理组合工艺应用研究进展[J]. 水处理技术, 2018, 44(2): 1-5. DOI: 10.16796/j.cnki.1000-3770.2018.02.001.
[7] 吴秋燕, 张忠国, 杨柳, 等. 正渗透汲取液的研究进展[J]. 环境科学与技术, 2015, 38(6): 139-145, 150. DOI: 10.3969/j.issn.1003-6504.2015.06.022.
[8] JAFARINEJAD S, PARK H, MAYTON H, et al. Concentrating ammonium in wastewater by forward osmosis using a surface modified nanofiltration membrane[J]. Environment Science: Water Research & Technology, 2019, 5(2): 246-255. DOI: 10.1039/C8EW00690C.
[9] 宗刚, 沈凡. 正渗透膜回收废水中氨氮的研究进展[J]. 应用化工, 2024, 53(1): 222-227. DOI: 10.16581/j.cnki.issn1671-3206.20231128.005.
[10] YI X W, CHEN K, XIE M, et al. A novel fouling control strategy for forward osmosis membrane during sludge thickening via self-forming protective layer[J]. Separation and Purification Technology, 2023, 319: 124069. DOI: 10.1016/j.seppur.2023.124069.
[11] GONZALES R R, SASAKI Y, ISTIROKHATUN T, et al. Ammonium enrichment and recovery from synthetic and real industrial wastewater by amine-modified thin film composite forward osmosis membranes[J]. Separation and Purification Technology, 2022, 297: 121534. DOI: 10.1016/j.seppur.2022.121534.
[12] GAO T Y, ZHANG H M, XU X T, et al. Dissolved methane rejection by forward osmosis membrane to achieve in-situ energy recovery from anaerobic effluent[J]. Separation and Purification Technology, 2021, 254: 117489. DOI:10.1016/j.seppur.2020.117489.
[13] LEE L W, ZHU X Z, LIU Z W, et al. Probing the key foulants and membrane fouling under increasing salinity in anaerobic osmotic membrane bioreactors for low-strength wastewater treatment[J]. Chemical Engineering Journal, 2021, 413: 127450. DOI:10.1016/j.cej.2020.127450.
[14] 杨恒, 朱雷, 朱先征, 等. 厌氧正渗透MBR处理市政废水的效果及盐积累特性[J]. 水处理技术, 2021, 47(7): 113-117. DOI: 10.16796/j.cnki.1000-3770.2021.07.022.
[15] 吴思邈, 陈建明, 王爱廉, 等. 正渗透技术浓缩苹果汁过程中反向溶质扩散的研究[J]. 食品工业科技, 2021, 42(24): 172-180. DOI: 10.13386/j.issn1002-0306.2021040109.
[16] 方丽瑶, 吕慧, 付佳蓓, 等. 聚苯乙烯磺酸钠掺杂正渗透膜的制备及其性能[J]. 化工进展, 2019, 38(10): 4684-4692. DOI: 10.16085/j.issn.1000-6613.2019-0133.
[17] LI B D, HE X, WANG P P, et al. Opposite impacts of K+ and Ca2+ on membrane fouling by humic acid and cleaning process: evaluation and mechanism investigation[J]. Water Research, 2020, 183: 116006. DOI: 10.1016/j.watres.2020.116006.
[18] 张高爽, 张捍民. 钙离子对正渗透中海藻酸钠溶液污染特性的影响[J]. 水处理技术, 2022, 48(2): 89-92. DOI: 10.16796/j.cnki.1000-3770.2022.02.019.
[19] TANG C Y, SHE Q H, LAY W C L, et al. Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration[J]. Journal of Membrane Science. 2010, 354(1/2): 123-133. DOI: 10.1016/j.memsci.2010.02.059.
[20] CAI W W, GAO Z Y, YU S J, et al. New insights into membrane fouling formation during ultrafiltration of organic wastewater with high salinity[J]. Journal of Membrane Science, 2021, 635: 119446. DOI: 10.1016/j.memsci.2021.119446.
[21] ZEWELDI H G, LIMLJUCO L A, BENDOY A P, et al. The potential of monocationic imidazolium-, phosphonium-, and ammonium-based hydrophilic ionic liquids as draw solutes for forward osmosis[J]. Desalination, 2018, 444: 94-106. DOI: 10.1016/j.desal.2018.07.017.
[22] 王波, 唐勇, 杨景龙, 等. 镧-钙双金属凝胶微球对水中低磷含量的去除性能[J]. 水处理技术, 2021, 47(4): 86-90, 105. DOI: 10.16796/j.cnki.1000-3770.2021.04.017.
[23] JUN B M, CHO J, JANG A, et al. Charge characteristics (surface charge vs. zeta potential) of membrane surfaces to assess the salt rejection behavior of nanofiltration membranes[J]. Separation and Purification Technology, 2020, 247: 117026. DOI: 10.1016/j.seppur.2020.117026.
[24] BANERJEE A, DE R, DAS B. Hydrodynamic and conformational characterization of aqueous sodium alginate solutions with varying salinity[J]. Carbohydrate Polymers, 2022, 277: 118855. DOI: 10.1016/j.carbpol.2021.118855.
[25] ZHANG B, MAO X, HUANG D M, et al. Performance and membrane fouling in a novel algal-bacterial aerobic granular sludge (ABGS)-membrane bioreactor: effect of ABGS size[J]. Journay of Water Process Engineering, 2022, 49: 103155. DOI: 10.1016/j.jwpe.2022.103155.
[26] DING A, FAN Q, CHENG R, et al. Impacts of applied voltage on microbial electrolysis cell-anaerobic membrane bioreactor (MEC-AnMBR) and its membrane fouling mitigation mechanism[J]. Chemical Engineering Journal, 2018, 333: 630-635. DOI: 10.1016/j.cej.2017.09.190.
[27] LIU Y W, LI X, YANG Y L, et al. Analysis of the major particle-size based foulants responsible for ultrafiltration membrane fouling in polluted raw water[J]. Desalination, 2014, 347: 191-198. DOI: 10.1016/j.desal.2014.05.039.
[28] SHE Q H, JIN X, LI Q H, et al. Relating reverse and forward solute diffusion to membrane fouling in osmotically driven membrane processes[J]. Water Research, 2012, 46(7): 2478-2486. DOI: 10.1016/j.watres.2012.02.024.
[29] TANG S X, YANG J Y, LIN L Z, et al. Construction of physically crosslinked chitosan/sodium alginate/calcium ion double-network hydrogel and its application to heavy metal ions removal[J]. Chemical Engineering Journal, 2020, 393: 124728. DOI: 10.1016/j.cej.2020.124728.
[30] ZHANG Y, ZHANG M J, WANG F Y, et al. Membrane fouling in a submerged membrane bioreactor: effect of pH and its implications[J]. Bioresource Technology, 2014, 152: 7-14. DOI: 10.1016/j.biortech.2013.10.096.
[31] HALALI M A, DE LANNOY C F. Quantifying the impact of electrically conductive membrane-generated hydrogen peroxide and extreme pH on the viability of Escherichia coli biofilms[J]. Industrial & Engineering Chemistry Research, 2022, 61(1): 660-671. DOI: 10.1021/acs.iecr.1c02914.
[1] 陈鹏, 陈晓飞, 李世龙, 何乾坤, 汪政辉. 2016—2021年江汉平原水质时空变异分析[J]. 广西师范大学学报(自然科学版), 2024, 42(4): 195-202.
[2] 邓华, 张俊渝, 黄瑞, 王威, 胡乐宁. 竹炭负载氧化锌对Cr(Ⅵ)的吸附性能和机理[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 131-142.
[3] 郭永丽, 全洗强, 吴庆. 北方喀斯特地区地下水VOCs污染特征及健康风险——以山东省淄博市临淄区为例[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 102-113.
[4] 秦芳, 蒋钦凤, 王婷, 王玉荣, 冯吉庆, 陈金毅. Mg/Al水滑石和Zn/Al水滑石对微囊藻的去除性能研究[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 115-121.
[5] 林永生, 裴建国. 广西马山地下河系统地下水质量及污染特征分析[J]. 广西师范大学学报(自然科学版), 2015, 33(2): 127-133.
[6] 邓华, 李秋燕, 周瑞爽, 庞舒月, 刘金玉, 康彩艳. 短毛蓼粉末对Cd(Ⅱ)和Cu(Ⅱ)的吸附研究[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 102-112.
[7] 袁冬梅, 齐跃明, 黄光明, 王俊萍, 马仪鹏. 基于水库调蓄和地灾协同控制的地下水资源高效利用研究[J]. 广西师范大学学报(自然科学版), 2022, 40(2): 149-157.
Viewed
Full text
130
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 130

  From Others local
  Times 10 120
  Rate 8% 92%

Abstract
74
Just accepted Online first Issue
0 0 74
  From Others local
  Times 63 11
  Rate 85% 15%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
[1] 朱格格, 黄安书, 覃盈盈. 基于Web of Science的国际红树林研究发展态势分析[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 1 -12 .
[2] 何静, 冯元柳, 邵靖雯. 基于CiteSpace的多源数据融合研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 13 -27 .
[3] 王淑颖, 卢宇翔, 董淑彤, 陈默, 康秉娅, 蒋长兰, 宿程远. 污水中抗生素抗性基因传播过程及控制技术研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 1 -15 .
[4] 钟俏, 陈生龙, 唐聪聪. 水凝胶技术在微藻采收中的应用:现状、挑战与发展分析[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 16 -29 .
[5] 郑国权, 秦永丽, 汪晨祥, 葛仕佳, 闻倩敏, 蒋永荣. ABR硫酸盐还原体系分级沉淀酸性矿山废水中重金属及矿物形成[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 40 -52 .
[6] 刘洋, 张毅杰, 章延, 李玲, 孔祥铭, 李红. 饮用水处理中藻类混凝消除技术的现状与趋势——基于CiteSpace的可视化分析[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 53 -66 .
[7] 田晟, 陈东. 基于深度强化学习的网联燃料电池混合动力汽车生态驾驶联合优化方法[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 67 -80 .
[8] 陈秀锋, 王成鑫, 赵凤阳, 杨凯, 谷可鑫. 改进DQN算法的单点交叉口信号控制方法[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 81 -88 .
[9] 李欣, 宁静. 基于时空特征融合的电力系统暂态稳定评估[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 89 -100 .
[10] 段沁宇, 薛贵军, 谭全伟, 谢文举. 基于SVMD的改进BWO-TimesNet短期热负荷预测模型[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 101 -116 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发