广西师范大学学报(自然科学版) ›› 2020, Vol. 38 ›› Issue (6): 102-113.doi: 10.16088/j.issn.1001-6600.2020.06.012

• • 上一篇    下一篇

北方喀斯特地区地下水VOCs污染特征及健康风险——以山东省淄博市临淄区为例

郭永丽1,2*, 全洗强1, 吴庆1   

  1. 1.自然资源部/广西岩溶动力学重点实验室, 中国地质科学院岩溶地质研究所, 广西桂林541004;
    2.联合国教科文组织国际岩溶研究中心, 广西桂林541004
  • 收稿日期:2019-10-15 发布日期:2020-11-30
  • 通讯作者: 郭永丽(1989—),女,河南太康人,中国地质科学院岩溶地质研究所助理研究员。E-mail:gylguo@karst.ac.cn
  • 基金资助:
    国家自然科学基金(41702277);联合国教科文组织国际地学计划项目(IGCP 661);广西重大科技创新基地建设项目(2018-242-Z01);中国地质科学院基本科研业务费项目(JYYWF20182002, 2020004);广西科技计划(桂科AD17129047);广西自然科学基金(2017GXNSFFA198006, 2018GXNSFDA050002);对发展中国家科技援助项目(KY201802009);中国科学院国际合作局国际伙伴计划项目(132852KYSB20170029-01)

Pollution Characteristics and Health Risk Assessment of Volatile Organic Compounds of Typical Karst Groundwater Source in North China

GUO Yongli1,2*, QUAN Xiqiang1, WU Qing1   

  1. 1. Institute of Karst Geology, Chinese Academy of Geological / Key Laboratory of Karst Dynamics, Ministry of Natural Resources and Guangxi, Guilin Guangxi 541004, China;
    2. International Research Center on Karst Under the Auspices ofUnited Nations Educational, Scientific and Cultural Organization, Guilin Guangxi 541004, China
  • Received:2019-10-15 Published:2020-11-30

摘要: 为研究山东省淄博市临淄区喀斯特地下水中挥发性有机物(volatile organic compounds, VOCs)的污染特征及其对人类健康带来的风险,采集研究区内19个地下水样品,检测其54种VOCs的质量浓度。基于GIS平台和SPSS软件,利用数理统计方法和图解法等分析研究VOCs的检出率、空间分布特征、影响因素。结果表明:有16个地下水样品检出有机物,检出的20种VOCs属于芳香烃类和卤代烃类;单种有机物最高检出率为68.42%;三氯甲烷质量浓度最高,为404.00 μg/L;一个样点的1,1-二氯乙烷、三氯甲烷、四氯化碳、三氯乙烯和另一样点的三氯乙烯浓度超过中国/WHO饮用水标准;区内地下水中VOCs的空间分布与化工企业等的空间布局、地下水流场、土地利用类型、人类活动等密切相关。研究显示:整体上2条主径流路径上的总致癌最大风险触碰美国环境保护署建议的阈值(10-6),一条地下水径流路径上工厂密集区总致癌最大风险超过了可接受水平(10-4)且总非致癌最大风险大于1。山东淄博市临淄区地下水中VOCs的存在已对区内居民饮用水安全带来隐患,必须采取积极措施优化地下水环境,防止水质进一步恶化,解决当地居民饮用水源问题。

关键词: 喀斯特地下水, 挥发性有机物, 空间分布特征, 影响因素, 健康风险, 山东省淄博市

Abstract: In order to study pollution characteristics of volatile organic compounds (VOCs) and their health risk assessment on humans in karst groundwater located in Linzi distinct, Zibo city, Shandong province, 19 groundwater samples were collected, 54 VOCs were analyzed. Detection rate, spatial distribution characteristics and influencing factors of VOCs in karst groundwater were analyzed by using mathematical statistics method and graphical method based on the GIS platform and SPSS software. Not cancer risk (NCR) and Incremental lifetime cancer risk (ILCR) of VOCs of drinking the karst groundwater were calculated by the model recommended by United States Environmental Protection Agency (US EPA). VOCs could be detected in 16 sample sites in the study areas, there were 20 VOCs existing the groundwater samples. The highest detection rate of a VOC was 68.42%. Trichloromethane had the highest concentration of 404.00 μg/L. Concentrations of 1,1-dichloroethane, trichloromethane, carbon tetrachloride, trichloroethylene in the D-8 site and trichloroethylene in the D-6 were higher than drinking water criterion of China or WHO. Spatial distribution of VOCs in groundwater had close correlation with chemical factories, groundwater flow field, landuse, human activities and others. The results showed that the maximum cancerous risk indexes along the two groundwater flow paths exceed the US EPA’s recommended risk index (10-6), the maximum cancerous risk index and noncancerous risks index exceeded the 10-4 and 1 (US EPA’s accepted standard) in the centralized chemical factories along the one groundwater flow path . Therefore, more attention should be paid to optimize groundwater environment and prevent further deterioration of groundwater quality, in order to ensure the safely drinking water sources and sustainable development of karst groundwater in Linzi distinct, Zibo city, Shandong province.

Key words: katst groundwater, volatile organic compounds, spatial distribution characteristics, influencing factors, health risk assessment, Zibo, Shandong, China

中图分类号: 

  • P641
[1] PAVLOVSKIY I, SELLE B. Integrating hydrogeochemical, hydrogeological, and environmental tracer data to understand groundwater flow for a karstified aquifer system[J]. Ground Water, 2015, 53(1): 156-165.
[2] 韩行瑞. 岩溶水文地质学[M]. 北京: 科学出版社, 2015: 16-20.
[3] 潘晓东, 尹学灵, 唐健生, 等. 寨底地下河系统脆弱性评价指标体系及方法[J]. 广西师范大学学报(自然科学版), 2014, 32(3):168-174.
[4] 袁道先, 蒋勇军, 沈立成, 等. 现代岩溶学[M]. 北京: 科学出版社, 2016: 104-105.
[5] 吴庆, 郭永丽, 翟远征, 等. 大武水源地地下水中NO3-N动态变化特征及其影响因素分析[J]. 水文, 2017, 37(6): 68-73.
[6] 郭永丽, 吴庆, 翟远征, 等. 某水源地地下水中石油类有机污染特征[J]. 人民黄河, 2018, 40(10): 61-65, 81.
[7] 刘姝媛. 大武地下水水源地污染风险动态评价研究[D]. 北京: 北京师范大学, 2016.
[8] 江梅, 邹兰, 李晓倩, 等. 我国挥发性有机物定义和控制指标的探讨[J]. 环境科学, 2015, 36(9): 3522-3532.
[9] LI Z K, CHANG F Y, SHI P, et al. Occurrence and potential human health risks of semi-volatile organic compounds in drinking water from cities along the Chinese coastland of the Yellow Sea[J]. Chemosphere, 2018, 206(17): 655-662.
[10] LIU B H, CHEN L, HUANG L X, et al. Distribution of volatile organic compounds (VOCs) in surface water, soil, and groundwater within a chemical industry park in Eastern China[J]. Water Science and Technology, 2015, 71(2): 259-267.
[11] HUANG B B, LEI C, WEI C H, et al. Chlorinated volatile organic compounds (Cl-VOCs) in environment-sources, potential human health impacts, and current remediation technologies[J]. Environment International, 2014, 71(10): 118-138.
[12] 尚宇宁. 淄博市大武水源地岩溶水水位多年动态变化分析研究[J]. 山东国土资源, 2013, 29(9):44-47.
[13] 李沫蕊, 王韦舒, 任姝娟, 等. 运用改进综合评分法筛选典型污染物的研究:以大武水源地地下水典型污染物筛选为例[J]. 环境污染与防治, 2014, 36(11): 72-77.
[14] GUO Y L, ZHAI Y Z, WU Q, et al. Proposed APLIE method for groundwater vulnerability assessment in karst-phreatic aquifer, Shandong Province, China: a case study[J]. Environmental Earth Sciences, 2016, 75(2):112.
[15] GUO Y L, WU Q, LI C S, et al. Application of the risk-based early warning method in a fracture-karst water source, North China[J]. Water Environment Research, 2018, 90(3): 206-219.
[16] US EPA. Risk Assessment guidance for superfund: volume:Ⅰ human health evaluation manual[R]. Washington DC: Office of Superfund Remediation and Technology Innovation, U.S. Environmental Protection Agency, 2004.
[17] US EPA. Chemical-specific inputs for EPA's 2015 final updated human health ambient water quality criteria[R/OL]. Washington DC: US EPA, 2015[2019-10-15]. http://www.epa.govwqchumanhealth-water-quality-criteria.
[18] 梁小明, 张嘉妮, 陈小方, 等. 我国人为源挥发性有机物反应性排放清单[J]. 环境科学, 2017, 38(3): 845-854.
[19] 昌盛, 赵兴茹, 刘琰, 等. 滹沱河冲洪积扇地下水中挥发性有机物的分布特征与健康风险[J]. 环境科学研究, 2016, 29(6): 854-862.
[20] LAN F N, QIN X Q, JIANG Z C, et al. Influences of land use/land cover on hydrogeochemical indexes of karst groundwater in the Dagouhe Basin, Southwest China[J]. Clean—Soil Air Water, 2015, 43(5): 683-689.
[21] JIANG Y J, CAO M, YUAN D X, et al. Hydrogeological characterization and environmental effects of the deteriorating urban karst groundwater in a karst trough valley: Nanshan, SW China[J]. Hydrogeology Journal, 2018, 26(5): 1487-1497.
[22] CATER J M, MORAN M J, ZOGORSKI J S, et al. Factors associated with sources, transport, and fate of chloroform and three other trihalomethanes in untreated groundwater used for drinking water[J]. Environmental Science and Technology, 2012, 46(15): 8189-8197.
[23] MARIĆ N, MATIĆ I, PAPIĆ P, et al. Natural attenuation of petroleum hydrocarbons—a study of biodegradation effects in groundwater(Vitanovac, Serbia)[J]. Environmental Monitoring and Assessment, 2018, 190(2): 89.
[24] APPELO C A J, POSTMA D. Geochemistry, groundwater and pollution[M]. Leiden: Balkema Press, 2005.
[25] SQUILLACE P J, MORAN M J. Factors Associated with sources, transport, and fate of volatile organic compounds and their mixtures in aquifers of the United States[J]. Environmental Science and Technology, 2007, 41(7): 2123-2130.
[26] 国家标准化管理委员会. 生活饮用水卫生标准: GB 5749-2006[S]. 北京: 中国标准出版社, 2007.
[27] World Health Organization. Guidelines for drinking-water quality[R]. Genera: WHO Press, 2011.
[28] 李丽, 许秋瑾, 梁存珍, 等. 江苏某县乡镇饮用水中挥发性有机物的检测及其风险评价[J]. 中国环境监测, 2013, 29(4): 1-4.
[29] 张春艳, 高柏, 郭亚丹, 等. 鄱阳湖区域地下水有机污染物特征与风险评价[J]. 生态毒理学报, 2016, 11(2): 524-530.
[30] HAN L, QIAN L B, YAN J C, et al. A comparison of risk modeling tools and a case study for human health risk assessment of volatile organic compounds in contaminated groundwater[J]. Environmental Science and Pollution Research, 2016, 23(2): 1234-1245.
[1] 彭丽梅, 赵理, 周悟, 胡月明. 广州市从化区耕地土壤重金属风险评价[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 118-129.
[2] 陈春强,邓 华,陈小梅. 广西3个锰矿恢复区农作物重金属健康风险评价[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 127-135.
[3] 沈利兵, 黄大荣, 楚晓艳, 赵玲. 基于三标度层次分析法的路网脆弱性影响因素研究[J]. 广西师范大学学报(自然科学版), 2013, 31(4): 54-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐建闽, 韦佳, 首艳芳. 基于博弈论-云模型的城市道路交通运行状态综合评价[J]. 广西师范大学学报(自然科学版), 2020, 38(4): 1 -10 .
[2] 张灿龙, 李燕茹, 李志欣, 王智文. 基于核相关滤波与特征融合的分块跟踪算法[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 12 -23 .
[3] 许伦辉, 曹宇超, 林培群. 基于融合免疫优化和遗传算法的多应急物资中心选址与调度[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 1 -13 .
[4] 胡锦铭, 韦笃取. 分数阶永磁同步电机的广义同步研究[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 14 -20 .
[5] 朱勇建, 罗坚, 秦运柏, 秦国峰, 唐楚柳. 基于光度立体和级数展开法的金属表面缺陷检测方法[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 21 -31 .
[6] 唐熔钗, 伍锡如. 基于改进YOLO-V3网络的百香果实时检测[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 32 -39 .
[7] 张汝昌, 邱杰, 王明堂, 陈庆锋. 基于自适应局部特征的蛋白质三维结构分类[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 40 -50 .
[8] 陈东, 胡葵. 覆盖Gorenstein AC-平坦维数[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 51 -55 .
[9] 左佳斌, 贠永震. 一类分数阶微分方程的反周期边值问题[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 56 -64 .
[10] 王跃, 叶红艳, 雷俊, 索洪敏. 带线性项Kirchhoff型问题的无穷多古典解[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 65 -73 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发