广西师范大学学报(自然科学版) ›› 2020, Vol. 38 ›› Issue (5): 118-129.doi: 10.16088/j.issn.1001-6600.2020.05.015

• • 上一篇    

广州市从化区耕地土壤重金属风险评价

彭丽梅1,2,3,4, 赵理1,2,3,4,5, 周悟1,2,3,4,5, 胡月明1,2,3,4,5,6,7*   

  1. 1.华南农业大学资源环境学院,广东广州510642;
    2.自然资源部建设用地再开发重点实验室,广东广州510642;
    3.广东省土地利用与整治重点实验室, 广东广州510642;
    4.广东省土地信息工程技术研究中心, 广东广州510642;
    5.广州市华南自然资源科学技术研究院, 广东广州510642;
    6.青海大学省部共建三江源生态与高原农牧业国家重点实验室, 青海西宁810016;
    7.电子科技大学资源环境学院,四川成都610054
  • 收稿日期:2019-07-19 出版日期:2020-09-25 发布日期:2020-10-09
  • 通讯作者: 胡月明(1964—), 男, 湖南益阳人, 华南农业大学教授, 博导。E-mail: ymhu163@163.com
  • 基金资助:
    国家重点研发计划(2016YFD0800301); 广州市科技计划(201807010048)

Risk Assessment of Heavy Metals in Cultivated Land in Conghua District of Guangzhou City, China

PENG Limei1,2,3,4, ZHAO Li1,2,3,4,5, ZHOU Wu1,2,3,4,5, HU Yueming1,2,3,4,5,6,7*   

  1. 1. College of Natural Resources and Environment, South China Agricultural University, Guangzhou Guangdong 510642, China;
    2. Key Laboratory of Land Redevelopment of Ministry of Land and Resources, Guangzhou Guangdong 510642, China;
    3. Guangdong Province Key Laboratory for Land Use and Consolidation, Guangzhou Guangdong 510642, China;
    4. Guangdong Province Engineering Research Center for Land Information Technology, Guangzhou Guangdong 510642, China;
    5. South China Academy of Natural Resources, Guangzhou Guangdong 510642, China;
    6. State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining Qinghai 810016, China;
    7. College of Resources and Environment, Electronic Science and Technology University, Chengdu Sichuan, 610054,China
  • Received:2019-07-19 Online:2020-09-25 Published:2020-10-09

摘要: 土壤是环境的重要组成部分,过量的重金属进入土壤圈,不仅会导致土壤质量下降,土壤生产力和粮食安全降低,更会对人类健康造成影响。本文以广州市从化区76个采样点为基础,采用Hakanson潜在生态风险指数及健康风险评价方法,对耕地土壤5种重金属镉(Cd)、汞(Hg)、砷(As)、铅(Pb)和铬(Cr)进行风险评价,得到各重金属含量由大到小依次为:Cr(78.690±38.160 mg·kg-1)、Pb(54.300±18.120 mg·kg-1)、As(10.280±7.230mg·kg-1)、Hg(0.163±0.050 mg·kg-1)、Cd(0.160±0.050mg·kg-1)。同时得到土壤潜在生态风险贡献率由大到小顺序为:Cd、Hg、As、Pb、Cr。结果显示:重金属Cd和Hg潜在生态风险指数处于中等和较高生态风险水平,其他3种重金属都处于轻微生态风险水平,综合潜在生态风险指数处于中等生态风险水平;非致癌风险主要来自重金属Cr,其中儿童的多途径非致癌总风险是成人的7倍左右;重金属As和Cd致癌总风险为1.997×10-3,存在致癌风险。研究表明广州市从化区耕地土壤重金属存在一定的污染风险,在实际生产生活中应加强相应防范和控制措施。

关键词: 耕地土壤, 重金属, 潜在生态风险评价, 健康风险评价, 广州市从化区

Abstract: Soil is an important part of the environment. Excessive heavy metals entering the soil cycle will not only lead to the decline of soil quality, soil productivity and food security, but also affect human health. Based on 76 sampling sites in Conghua District of Guangzhou city, the risk assessment of five heavy metals Cd, Hg, As, Pb and Cr in cultivated soil was carried out by using Hakanson potential ecological risk index and health risk assessment method. The results showed that the content of each heavy metal was in the order as follow: Cr(78.690±38.160 mg·kg-1), Pb(54.300±18.120 mg·kg-1), As(10.280±7.230mg·kg-1), Hg(0.163±0.050 mg·kg-1), Cd(0.160±0.050mg·kg-1). The contribution rate to the potential ecological risk of soil is as follow: Cd,Hg,As,Pb,and Cr. The potential ecological risk indexes of heavy metals Cd and Hg were mainly at medium and high ecological risk levels, while the other three heavy metals were all at slight ecological risk levels. The comprehensive potential ecological risk index was mainly at medium ecological risk level. The non-carcinogenic risk mainly comes from heavy metal Cr, among which the total risk of multi-pathway non-carcinogenic in children was about 7 times that of adults. The total carcinogenic risk of heavy metals As and Cd is 1.997×10-3, and there was a carcinogenic risk. The results showed that there was a certain pollution risk of heavy metals in the cultivated soil of Conghua District, and the corresponding prevention and control measures should be strengthened in the actual production and life.

Key words: the cultivated land, heavy metals, potential ecological risk assessment, health risk assessment, Conghua district, Guangzhou City

中图分类号: 

  • X53
[1] GU Y G,LIN Q,GAO Y P. Metals in exposed-lawn soils from 18 urban parks and its human health implication in southern China’s largest city,Guangzhou[J]. Journal of Cleaner Production,2016,115:122-129.
[2] 王腾飞,谭长银,曹雪莹,等. 长期施肥对土壤重金属积累和有效性的影响[J]. 农业环境科学学报,2017,36(2):257-263.
[3] 吕建树, 张祖陆,刘洋,等. 日照市土壤重金属来源解析及环境风险评价[J]. 地理学报,2012,67(7):971-984.
[4] 刘亚纳,朱书法,魏学锋,等. 河南洛阳市不同功能区土壤重金属污染特征及评价[J]. 环境科学,2016,37( 6):2322-2328.
[5] 陈同斌. 土壤污染将成为中国的世纪难题[J]. 科技文萃,2005,30(9):30-32.
[6] 宋成军,张玉华,刘东生,等. 土地利用/覆盖变化(LUCC)与土壤重金属积累的关系研究进展[J]. 生态毒理学报,2009,4(5):617-624.
[7] XIAO R,BAI J H,LU Q Q,et al.Fractionation,transfer,and ecological risks of heavy metals in riparian and ditch wetlands across a 100-year chronosequence of reclamation in an estuary of China[J].Science of the Total Environment,2015,517:66-75.
[8] YANG Q Q,LI Z Y,LU X N,et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment[J]. Science of the Total Environment,2018,642:690-700.
[9] XIAO R,WANG S,LI R H,et al. Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan,Shaanxi,China[J]. Ecotoxicology and Environmental Safety,2017,141:17-24.
[10] 唐发静,祖艳群.土壤重金属空间变异的研究方法[J].云南农业大学学报,2008,23(4):558-561.
[11] 张引娥. 重金属元素在厦门—漳州土壤剖面中的分布特征及其环境意义[J]. 地球与环境,2013,41(1):13-19.
[12] 谷阳光,高富代. 我国省会城市土壤重金属含量分布与健康风险评价[J]. 环境化学,2017,36(1) : 62-71.
[13] 戴彬,吕建树,战金成,等. 山东省典型工业城市土壤重金属来源、空间分布及潜在生态风险评价[J]. 环境科学,2015,36(2):507-515.
[14] MAN Y B, SUN X L, ZHAO Y G, et al. Health risk assessment of abandoned agricultural soils based on heavy metal contents in Hong Kong, the world’s most populated city[J]. Environment International,2010,36(6):570-576.
[15] WANG X L,ZHANG L,ZHAO Z H,et al. Heavy metal contamination in surface sediments of representative reservoirs in the hilly area of southern China[J]. Environmental Science and Pollution Research,2017,24(34):26574-26585.
[16] 李结雯,李超,黄纯琳 ,等. 广州市番禺区农田土壤重金属污染调查分析[J]. 中国环保产业,2015(8):65-69.
[17] 李永杰,张宽义. 广州市公园土壤重金属含量特征及潜在生态危害评价[J]. 中国园艺文摘,2012(11):43-45.
[18] 毕华,钟嶷,程焰芳,等. 广州市农村菜地土壤重金属污染生态风险评价[J]. 医学动物防制,2019,35(4):366-369.
[19] 唐结明,姚爱军,梁业恒. 广州市万亩果园土壤重金属污染调查与评价[J]. 亚热带资源与环境学报,2012,7(2):27-35.
[20] 邓华,许丹丹,李明顺,等. 不同消解方法分析土壤中重金属含量的比较[J]. 广西师范大学学报(自然科学版),2010,28(3):80-83.
[21] 陈秀端,卢新卫. 基于受体模型与地统计的城市居民区土壤重金属污染源解析[J]. 环境科学,2017,38(6):2513-2521.
[22] 陈晓燕,刘桂华,范成五,等. 黔东南州黎平县耕地土壤重金属生态风险的评价[J]. 西南农业学报,2019,32(6):1412-1416.
[23] 陈涛,常庆瑞,刘京,等. 长期污灌农田土壤重金属污染及潜在环境风险评价[J]. 农业环境科学学报,2012,31(11):2152-2159.
[24] RAPANT S,KORDÍK J. An environmental risk assessment map of the Slovak Republic:application of data from geochemical atlases[J]. Environmental Geology,2003,44:400-407.
[25] HAKANSON L. An ecological risk index for aquatic pollution control. a sedimentological approach[J]. Water Research,1980,14(8):975-1001.
[26] 徐争启,倪师军,庹先国,等.潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术,2008,31(2) : 112-115.
[27] 鞠铁男,吴啸,师华定,等.海沟河小流域耕地土壤重金属污染与生态风险评价[J]. 环境工程技术学报,2018,8(5):556-562.
[28] 周艳,陈樯,邓绍坡,等. 西南某铅锌矿区农田土壤重金属空间主成分分析及生态风险评价[J]. 环境科学, 2018,39(6):2884-2892.
[29] DOABI S A,KARAMI M,AFYUNI M,et al. Pollution and health risk assessment of heavy metals in agricultural soil, atmospheric dust and major food crops in Kermanshah province, Iran[J]. Ecotoxicology and Environmental Safety, 2018,163:153-164.
[30] HUANG J H,GUO S T,ZENG G M,et al. A new exploration of health risk assessment quantification from sources of soil heavy metals under different land use[J]. Environmental Pollution,2018,243:49-58.
[31] 陶美霞,胡虎,胡兰文,等. 上饶市某铜矿废弃地土壤重金属污染特征及健康风险评价[J]. 生态环境学报,2018,27(6):1153-1159.
[32] 冯乙晴,刘灵飞,肖辉林,等. 深圳市典型工业区土壤重金属污染特征及健康风险评价[J]. 生态环境学报,2017,26(6):1051-1058.
[33] 安婧,宫晓双,陈宏伟,等. 沈抚灌区农田土壤重金属污染时空变化特征及生态健康风险评价[J]. 农业环境科学学报,2016,35(1):37-44.
[34] 秦普丰,刘丽,侯红,等. 工业城市不同功能区土壤和蔬菜中重金属污染及其健康风险评价[J]. 生态环境学报,2010,19(7):1668-1674.
[35] 中国环境监测总站. 中国土壤元素背景值[M]. 北京:中国环境科学出版社,1990:330-378.
[36] 成杭新,李括,李敏,等. 中国城市土壤化学元素的背景值与基准值[J]. 地学前缘,2014,21(3):265-306.
[37] ZHANG Z,LU Y,LI H P,et al. Assessment of heavy metal contamination, distribution and source identification in the sediments from the Zi jiang River, China[J]. Science of the Total Environment,2018,645:235-243.
[38] 沈建伟,徐加宽,刘建国,等. 苏州市农田土壤重金属污染状况研究[J]. 环境科学与技术,2010,33(增刊2):87-89, 93.
[39] 王中阳. 朝阳地区耕地土壤重金属污染风险评价与来源解析研究[D]. 沈阳:沈阳农业大学,2018.
[1] 徐婷婷, 余秋平, 漆培艺, 刘可慧, 李艺, 蒋永荣, 于方明. 不同淋洗剂对矿区土壤重金属解吸的影响[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 188-193.
[2] 郑海霞, 王月, 陈芬, 勾朝阳, 郑庆荣. 五台山南台土壤重金属特征及污染风险评价[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 99-107.
[3] 冯修, 马楠楠, 职红涛, 韩双乔, 张翔. 重金属捕集剂UDTC对低浓度镉废水的处理研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 63-67.
[4] 陈春强,邓 华,陈小梅. 广西3个锰矿恢复区农作物重金属健康风险评价[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 127-135.
[5] 陈春强, 邓华, 黄芳芳. 广西桂平锰矿区土壤重金属含量及形态分析[J]. 广西师范大学学报(自然科学版), 2014, 32(4): 108-114.
[6] 张俊, 黎道洪, 杜典松. 贵州龙井洞和白龙洞裸灶螽对重金属的富集[J]. 广西师范大学学报(自然科学版), 2012, 30(4): 104-109.
[7] 唐宇庭, 黄佳玉, 王维生, 张超兰. 低分子有机酸对油菜吸收Cd和Zn的影响[J]. 广西师范大学学报(自然科学版), 2012, 30(2): 127-131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韦扬江, 梁艺耀, 唐高华, 苏磊磊, 陈蔚凝. 模n高斯整数环的商环的立方映射图[J]. 广西师范大学学报(自然科学版), 2016, 34(3): 53 -61 .
[2] 庞琳娜, 邱燕燕, 卢家宽. p-幂零群的若干充分条件[J]. 广西师范大学学报(自然科学版), 2014, 32(2): 64 -66 .
[3] 周黄歆, 梁振华, 彭桂花, 焦杭州. 介孔二氧化硅制备中粒径和孔径控制研究[J]. 广西师范大学学报(自然科学版), 2014, 32(3): 74 -78 .
[4] 许伦辉, 陈凯勋. 基于改进萤火虫算法优化BP神经网络的路网速度分布预测[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 1 -8 .
[5] 李昭梅, 李文琳, 孟安欣, 赵振池, 覃永富, 蓝海会, 卢慧金, 陈丽莎, 梁维刚, 沈洪涛. 古代字画加速器质谱14C测年研究[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 38 -43 .
[6] 徐婷婷, 余秋平, 漆培艺, 刘可慧, 李艺, 蒋永荣, 于方明. 不同淋洗剂对矿区土壤重金属解吸的影响[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 188 -193 .
[7] 韩博文. 考虑实时需求的需求响应式公交调度方法研究[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 9 -20 .
[8] 吴娟,朱宏阳,梅平,陈武,李中宝. 聚甲基丙烯酸甲酯改性纳米SiO2及其Pickering乳液稳定性[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 120 -131 .
[9] 杜雪松,林勇,梁国琨,黄姻,宾石玉,陈忠,覃俊奇,赵怡. 两种罗非鱼的耐寒性能比较[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 174 -179 .
[10] 李飞羽, 翁小雄, 姚树申. 基于乘客群体出行时间间隔的标度律研究[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 1 -9 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发