广西师范大学学报(自然科学版) ›› 2021, Vol. 39 ›› Issue (3): 102-112.doi: 10.16088/j.issn.1001-6600.2020061103

• • 上一篇    下一篇

短毛蓼粉末对Cd(Ⅱ)和Cu(Ⅱ)的吸附研究

邓华1,2, 李秋燕1,2, 周瑞爽1,2, 庞舒月1,2, 刘金玉1,2, 康彩艳1,2*   

  1. 1.广西师范大学 珍稀濒危动植物生态与环境保护教育部重点实验室, 广西 桂林 541006;
    2.广西师范大学 环境与资源学院, 广西 桂林 541006
  • 收稿日期:2020-06-11 修回日期:2020-08-15 发布日期:2021-05-13
  • 通讯作者: 康彩艳(1962—),女,辽宁盖县人,广西师范大学教授,博士。E-mail: 309367585@qq.com
  • 基金资助:
    国家自然科学基金(41301343)

Adsorption of Cd(Ⅱ) and Cu(Ⅱ) from Aqueous Solutions by Polygonum Pubescens Blume Powder

DENG Hua1,2, LI Qiuyan1,2, ZHOU Ruishuang1,2, PANG Shuyue1,2, LIU Jinyu1,2, KANG Caiyan1,2*   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Guilin Guangxi 541006, China;
    2. College of Environment and Resources, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2020-06-11 Revised:2020-08-15 Published:2021-05-13

摘要: 本文以超富集锰植物短毛蓼为研究对象,将短毛蓼粉末制备成吸附剂,采用批量吸附试验的方法,研究溶液pH值、吸附剂投加量、重金属离子初始浓度、温度和时间等对短毛蓼粉末吸附Cd(II)和Cu(II)的影响,通过动力学、等温模型拟合以及FT-IR、SEM-EDS、XRD表征分析,对吸附机理进行探究。结果表明,短毛蓼粉末对Cd(II)和Cu(II)吸附的最佳pH分别为8和7,最佳投加量均为0.25 g,吸附平衡时间为60 min。短毛蓼粉末对Cd(II)和Cu(II)吸附均符合准二级动力学模型,对Cu(II)的吸附符合Langmuir模型,最大理论吸附量为90.01 mg/g,对Cd(II)的吸附符合Freundlich模型,最大理论吸附量为62.69 mg/g;吸附热力学分析表明Cd(II)和Cu(II)的ΔG、ΔH均为负值,表明吸附过程均为自发的放热过程;Cd(II)和Cu(II)的吸附主要通过氢键作用、离子交换作用及阳离子-π作用等协同进行。

关键词: 短毛蓼粉末, 镉, 铜, 吸附, 吸附机理

Abstract: In this paper, the effects of pH value, dosage, initial concentration, temperature and adsorption time on the adsorption of Cd(Ⅱ) and Cu(Ⅱ) by polygonum pubescens blume powder were studied by batch adsorption test with polygonum pubescens blume powder (hyperaccumulating manganese plant) as the research object. The adsorption mechanism was explored through kinetics, isothermal model fitting, FT-IR, SEM-EDS and XRD characterization analysis. The results showed that the optimum pH for adsorption of Cd(Ⅱ) and Cu(Ⅱ) by polygonum pubescens blume powder was 8 and 7, respectively, and the optimum dosage was 250 mg, and the adsorption equilibrium time was 60 min. The adsorption of Cd(Ⅱ) and Cu(Ⅱ) were in accordance with the quasi-second-order kinetic model. The adsorption of Cu(Ⅱ) was in accordance with Langmuir model, and the maximum theoretical adsorption capacity was 90.01 mg/g. The adsorption of Cd(Ⅱ) was in accordance with Freundlich model, and the maximum theoretical adsorption capacity was 62.69 mg/g. The adsorption thermodynamic analysis shows that the values of ΔG and ΔH are all negative, indicating that the adsorption process is spontaneous exothermic process. The results showed that the adsorption of Cd(Ⅱ) and Cu(Ⅱ) by polygonum pubescens blume powder were mainly carried out by hydrogen bonding, ion exchange and cation exchange-π interactions.

Key words: polygonum pubescens blume powder, cadmium, copper, adsorption, adsorption mechanism

中图分类号: 

  • X703
[1]吴文晖, 邹辉, 朱岗辉, 等. 湘中某矿区地下水重金属污染特征及健康风险评估[J]. 生态与农村环境学报, 2018, 34(11): 1027-1033. DOI:10.11934/j.issn.1673-4831.2018.11.010.
[2]常文保. 化学词典[M]. 北京:科学出版社, 2008.
[3]DONG L H, HOU L A, WANG Z S, et al. A new function of spent activated carbon in BAC process: removing heavy metals by ion exchange mechanism[J]. Journal of Hazardous Materials, 2018, 359: 76-84. DOI:10.1016/j.jhazmat.2018.07.030.
[4]ÇIMEN A. Removal of chromium from wastewater by reverse osmosis[J]. Russian Journal of Physical Chemistry A, 2015, 89(7): 1238-1243. DOI:10.1134/S0036024415070055.
[5]REN G P, SUN Y, LU A H, et al. Boosting electricity generation and Cr(VI) reduction based on a novel silicon solar cell coupled double-anode(photoanode/bioanode) microbial fuel cell[J]. Journal of Power Sources, 2018, 408: 46-50. DOI:10.1016/j.jpowsour.2018.10.081.
[6]LEIVA E, LEIVA-ARAVENA E, RODRÍGUEZ C, et al. Arsenic removal mediated by acidic pH neutralization and iron precipitation in microbial fuel cells[J]. Science of the Total Environment, 2018, 645: 471-481. DOI:10.1016/j.scitotenv.2018.06.378.
[7]LI X X, WANG X L, CHEN Y D, et al. Optimization of combined phytoremediation for heavy metal contaminated mine tailings by a field-scale orthogonal experiment[J]. Ecotoxicology and Environmental Safety, 2019, 168: 1-8. DOI:10.1016/j.ecoenv.2018.10.012.
[8]张彦. 玉米秸秆对重金属离子铅的吸附研究[J]. 化工中间体, 2015(12): 72-73.
[9]潘海燕, 冀兰涛, 丁清波. 落叶对重金属吸附的初步研究[J]. 仪器仪表与分析监测, 2001(4): 31-32,36.
[10]王昭, 赵思爽, 喻琴琴, 等. 文冠果外皮对水体中锌的去除研究[J]. 首都师范大学学报(自然科学版), 2013, 34(3): 26-33. DOI:10.19789/j.1004-9398.2013.03.007.
[11]谢永彬, 刘敬勇, 刘凯, 等. 甘蔗渣对水中Cr(Ⅵ)吸附性能的实验研究[J]. 水科学与工程技术, 2012(6): 39-42. DOI:10.19733/j.cnki.1672-9900.2012.06.011.
[12]和君强, 李菊梅, 马义兵, 等. 四种材料对灌溉水中镉净化性能的比较[J]. 农业环境科学学报, 2016, 35(10): 1984-1991. DOI:10.11654/jaes.2016-0363.
[13]林驰浩, 徐劼, 王嘉俊, 等. 生物质材料在重金属废水处理中的应用及其研究进展[J]. 广州化工, 2020, 48(5): 24-26,104.
[14]王重庆, 王晖, 江小燕, 等. 生物炭吸附重金属离子的研究进展[J]. 化工进展, 2019, 38(1): 692-706. DOI:10.16085/j.issn.1000-6613.2018-0993.
[15]肖芳芳, 张莹莹, 程建华, 等. 壳聚糖/磁性生物碳对重金属Cu(Ⅱ)的吸附性能[J]. 环境工程学报, 2019, 13(5): 1048-1055. DOI:10.12030/j.cjee.201810181.
[16]邓潇, 周航, 陈珊, 等. 改性玉米秸秆炭和花生壳炭对溶液中Cd2+的吸附[J]. 环境工程学报, 2016, 10(11): 6325-6331. DOI:10.12030/j.cjee.201810181.
[17]ACHARYA J, SAHU J N, MOHANTY C R, et al. Removal of lead(II) from wastewater by activated carbon developed from tamarind wood, by zinc chloride activation[J]. Chemical Engineering Journal, 2009,149(1/3): 249-262. DOI:10.1016/j.cej.2008.10.029.
[18]康彩艳, 莫蔚明, 蒋治良, 等. 漓江底泥对活性艳蓝X-BR的吸附行为研究[J]. 广西师范大学学报(自然科学版), 2004,22(4): 65-68.
[19]JIANG Y H, LI A Y, DENG H, et al. Phosphate adsorption from wastewater using ZnAl-LDO-loaded modified banana straw biochar[J]. Environmental Science and Pollution Research, 2019, 26(18): 18343-18353. DOI:10.1007/s11356-019-05183-1.
[20]LI Y, TSEND N, LI T, et al. Microwave assisted hydrothermal preparation of rice straw hydrochars for adsorption of organics and heavy metals[J]. Bioresource Technology, 2019, 273: 136-143. DOI:10.1016/j.biortech.2018.10.056.
[21]CHEN X C, CHEN G C, CHEN L G, et al. Adsorption of copper and zinc by biochars produced from pyrolys of hardwood and corn straw in aqueous solution[J]. Bioresource Technology, 2011, 102(19): 8877-8884. DOI:10.1016/j.biortech.2011.06.078.
[22]ZHANG W, SONG J Y, HE Q L, et al. Novel pectin based composite hydrogel derived from grapefruit peel for enhanced Cu(II) removal[J]. Journal of Hazardous Materials, 2020, 384: 121445. DOI:10.1016/j.jhazmat.2019.121445.
[23]周瑾琨, 尹志慧, 赵玮. 玉米皮纤维素提取工艺优化及结构表征[J]. 食品工业科技, 2019, 40(5): 207-212. DOI:10.13386/j.issn1002-0306.2019.05.034.
[24]LIU H K, XU F, XIE Y L, et al. Effect of modified coconut shell biochar on availability of heavy metals and biochemical characteristics of soil in multiple heavy metals contaminated soil[J]. Science of the Total Environment, 2018, 645: 702-709. DOI:10.1016/j.scitotenv.2018.07.115.
[25]胡学玉, 陈窈君, 张沙沙, 等. 磁性玉米秸秆生物炭对水体中Cd的去除作用及回收利用[J]. 农业工程学报, 2018, 34(19): 208-218. DOI:10.11975/j.issn.1002-6819.2018.19.027.
[26]JUNG K W, LEE S Y, LEE Y J. Facile one-pot hydrothermal synthesis of cubic spinel-type manganese ferrite/biochar composites for environmental remediation of heavy metals from aqueous solutions[J]. Bioresource Technology, 2018, 261: 1-9. DOI:10.1016/j.biortech.2018.04.003.
[27]REGUYAL F, SARMAH A K. Site energy distribution analysis and influence of Fe3O4 nanoparticles on sulfamethoxazole sorption in aqueous solution by magnetic pine sawdust biochar[J]. Environmental Pollution, 2018, 233: 510-519. DOI:10.1016/j.envpol.2017.09.076.
[28]AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: a review[J]. Chemosphere, 2014, 99: 19-33. DOI:10.1016/j.chemosphere.2013.10.071.
[29]SUN J K, LIAN F, LIU Z Q, et al. Biochars derived from various crop straws: characterization and Cd(II) removal potential[J]. Ecotoxicology and Environmental Safety, 2014, 106: 226-231. DOI:10.1016/j.ecoenv.2014.04.042.
[30]ZHANG F, WANG X, YIN D X. et al. Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth(Eichornia crassipes)[J]. Journal of Environmental Management, 2015, 153: 68-73. DOI:10.1016/j.jenvman.2015.01.043.
[31]KIM W K, SHIM T, KIM Y S, et al. Characterization of cadmium removal from aqueous solutions by biochar produced from a giant Miscanthus at different pyrolytic temperatures[J]. Bioresource Technology, 2013, 138: 266-270. DOI:10.1016/j.biortech.2013.03.186.
[32]GONG Y P, NI Z Y, XIONG Z Z, et al. Phosphate and ammonium adsorption of the modified biochar based on Phragmites australis after phytoremediation[J]. Environmental Science and Pollution Research, 2017, 24(9): 8326-8335. DOI:10.1007/s11356-017-8499-2.
[33]鲁秀国, 武今巾, 过依婷. 生物炭修复重金属污染土壤的研究进展[J]. 应用化工, 2019, 48(5): 1172-1177. DOI:10.16581/j.cnki.issn1671-3206.20190311.028.
[1] 王娜娜, 张翔. PAN基弱碱性离子交换纤维对Zn2+吸附性能研究[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 86-94.
[2] 林海蛟, 张继福, 张云, 胡云峰. 基于大孔吸附树脂先交联后吸附法固定化脂肪酶[J]. 广西师范大学学报(自然科学版), 2020, 38(4): 100-108.
[3] 肖咪云, 孙孟龙, 阮楚晋, 陈寿昆, 刘裕华, 陆祖军. 生防细菌2016NX1对病原真菌的抑制及发酵条件优化[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 168-178.
[4] 冯修, 马楠楠, 职红涛, 韩双乔, 张翔. 重金属捕集剂UDTC对低浓度镉废水的处理研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 63-67.
[5] 吴娟,邹华,梅平. 羧酸盐型Gemini表面活性剂的表面性能研究[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 78-86.
[6] 秦芳, 蒋钦凤, 王婷, 王玉荣, 冯吉庆, 陈金毅. Mg/Al水滑石和Zn/Al水滑石对微囊藻的去除性能研究[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 115-121.
[7] 董金超, 温桂清, 刘庆业, 梁爱惠, 蒋治良. 适配体修饰纳米金催化共振瑞利散射光谱法测定血红素[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 191-196.
[8] 石贵玉, 宜丽娜, 梁超红, 李明霞. 硒对镉胁迫下罗汉果组培苗生理生化特性的影响[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 60-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 肖发远,李好威. 基于模糊理论的无线传感器网络路由优化算法[J]. 广西师范大学学报(自然科学版), 2017, 35(1): 37 -43 .
[2] 白诗敏,张见乐,王任翔. 华中瘤足蕨配子体发育的研究[J]. 广西师范大学学报(自然科学版), 2017, 35(1): 98 -103 .
[3] 廖春贵,陈月连,熊小菊,胡宝清. 2007—2016年广西植被覆盖时空分布特征及其驱动因素[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 118 -127 .
[4] 徐勤, 马超美, 饶伟文, 邓立东. UPLC-QQQMS测定咳特灵中小叶榕干浸膏12种成分[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 80 -86 .
[5] 张庆庆, 王燕燕, 孟品佳, 张文芳. 扫集-胶束电泳检测鱼塘水中季铵盐类除草剂[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 93 -100 .
[6] 范才文, 唐娟, 罗琴, 李璐, 向秋. 超敏化学发光液稀释法降低蛋白印迹的发光强度[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 108 -111 .
[7] 俞青芬. 含六水氯化镁类离子液体的制备及性质研究[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 97 -103 .
[8] 程远垚, 宋树祥, 蒋品群. 2.4 GHz CMOS低噪声放大器设计[J]. 广西师范大学学报(自然科学版), 2016, 34(3): 7 -13 .
[9] 何鹏, 刘高凯, 李静辉. 基于机器视觉的疲劳驾驶监测预警系统[J]. 广西师范大学学报(自然科学版), 2015, 33(4): 25 -29 .
[10] 苏毅娟, 孙可, 邓振云, 尹科军. 基于LPP和l2,1的KNN填充算法[J]. 广西师范大学学报(自然科学版), 2015, 33(4): 55 -62 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发