|
广西师范大学学报(自然科学版) ›› 2021, Vol. 39 ›› Issue (3): 102-112.doi: 10.16088/j.issn.1001-6600.2020061103
邓华1,2, 李秋燕1,2, 周瑞爽1,2, 庞舒月1,2, 刘金玉1,2, 康彩艳1,2*
DENG Hua1,2, LI Qiuyan1,2, ZHOU Ruishuang1,2, PANG Shuyue1,2, LIU Jinyu1,2, KANG Caiyan1,2*
摘要: 本文以超富集锰植物短毛蓼为研究对象,将短毛蓼粉末制备成吸附剂,采用批量吸附试验的方法,研究溶液pH值、吸附剂投加量、重金属离子初始浓度、温度和时间等对短毛蓼粉末吸附Cd(II)和Cu(II)的影响,通过动力学、等温模型拟合以及FT-IR、SEM-EDS、XRD表征分析,对吸附机理进行探究。结果表明,短毛蓼粉末对Cd(II)和Cu(II)吸附的最佳pH分别为8和7,最佳投加量均为0.25 g,吸附平衡时间为60 min。短毛蓼粉末对Cd(II)和Cu(II)吸附均符合准二级动力学模型,对Cu(II)的吸附符合Langmuir模型,最大理论吸附量为90.01 mg/g,对Cd(II)的吸附符合Freundlich模型,最大理论吸附量为62.69 mg/g;吸附热力学分析表明Cd(II)和Cu(II)的ΔG、ΔH均为负值,表明吸附过程均为自发的放热过程;Cd(II)和Cu(II)的吸附主要通过氢键作用、离子交换作用及阳离子-π作用等协同进行。
中图分类号:
[1]吴文晖, 邹辉, 朱岗辉, 等. 湘中某矿区地下水重金属污染特征及健康风险评估[J]. 生态与农村环境学报, 2018, 34(11): 1027-1033. DOI:10.11934/j.issn.1673-4831.2018.11.010. [2]常文保. 化学词典[M]. 北京:科学出版社, 2008. [3]DONG L H, HOU L A, WANG Z S, et al. A new function of spent activated carbon in BAC process: removing heavy metals by ion exchange mechanism[J]. Journal of Hazardous Materials, 2018, 359: 76-84. DOI:10.1016/j.jhazmat.2018.07.030. [4]ÇIMEN A. Removal of chromium from wastewater by reverse osmosis[J]. Russian Journal of Physical Chemistry A, 2015, 89(7): 1238-1243. DOI:10.1134/S0036024415070055. [5]REN G P, SUN Y, LU A H, et al. Boosting electricity generation and Cr(VI) reduction based on a novel silicon solar cell coupled double-anode(photoanode/bioanode) microbial fuel cell[J]. Journal of Power Sources, 2018, 408: 46-50. DOI:10.1016/j.jpowsour.2018.10.081. [6]LEIVA E, LEIVA-ARAVENA E, RODRÍGUEZ C, et al. Arsenic removal mediated by acidic pH neutralization and iron precipitation in microbial fuel cells[J]. Science of the Total Environment, 2018, 645: 471-481. DOI:10.1016/j.scitotenv.2018.06.378. [7]LI X X, WANG X L, CHEN Y D, et al. Optimization of combined phytoremediation for heavy metal contaminated mine tailings by a field-scale orthogonal experiment[J]. Ecotoxicology and Environmental Safety, 2019, 168: 1-8. DOI:10.1016/j.ecoenv.2018.10.012. [8]张彦. 玉米秸秆对重金属离子铅的吸附研究[J]. 化工中间体, 2015(12): 72-73. [9]潘海燕, 冀兰涛, 丁清波. 落叶对重金属吸附的初步研究[J]. 仪器仪表与分析监测, 2001(4): 31-32,36. [10]王昭, 赵思爽, 喻琴琴, 等. 文冠果外皮对水体中锌的去除研究[J]. 首都师范大学学报(自然科学版), 2013, 34(3): 26-33. DOI:10.19789/j.1004-9398.2013.03.007. [11]谢永彬, 刘敬勇, 刘凯, 等. 甘蔗渣对水中Cr(Ⅵ)吸附性能的实验研究[J]. 水科学与工程技术, 2012(6): 39-42. DOI:10.19733/j.cnki.1672-9900.2012.06.011. [12]和君强, 李菊梅, 马义兵, 等. 四种材料对灌溉水中镉净化性能的比较[J]. 农业环境科学学报, 2016, 35(10): 1984-1991. DOI:10.11654/jaes.2016-0363. [13]林驰浩, 徐劼, 王嘉俊, 等. 生物质材料在重金属废水处理中的应用及其研究进展[J]. 广州化工, 2020, 48(5): 24-26,104. [14]王重庆, 王晖, 江小燕, 等. 生物炭吸附重金属离子的研究进展[J]. 化工进展, 2019, 38(1): 692-706. DOI:10.16085/j.issn.1000-6613.2018-0993. [15]肖芳芳, 张莹莹, 程建华, 等. 壳聚糖/磁性生物碳对重金属Cu(Ⅱ)的吸附性能[J]. 环境工程学报, 2019, 13(5): 1048-1055. DOI:10.12030/j.cjee.201810181. [16]邓潇, 周航, 陈珊, 等. 改性玉米秸秆炭和花生壳炭对溶液中Cd2+的吸附[J]. 环境工程学报, 2016, 10(11): 6325-6331. DOI:10.12030/j.cjee.201810181. [17]ACHARYA J, SAHU J N, MOHANTY C R, et al. Removal of lead(II) from wastewater by activated carbon developed from tamarind wood, by zinc chloride activation[J]. Chemical Engineering Journal, 2009,149(1/3): 249-262. DOI:10.1016/j.cej.2008.10.029. [18]康彩艳, 莫蔚明, 蒋治良, 等. 漓江底泥对活性艳蓝X-BR的吸附行为研究[J]. 广西师范大学学报(自然科学版), 2004,22(4): 65-68. [19]JIANG Y H, LI A Y, DENG H, et al. Phosphate adsorption from wastewater using ZnAl-LDO-loaded modified banana straw biochar[J]. Environmental Science and Pollution Research, 2019, 26(18): 18343-18353. DOI:10.1007/s11356-019-05183-1. [20]LI Y, TSEND N, LI T, et al. Microwave assisted hydrothermal preparation of rice straw hydrochars for adsorption of organics and heavy metals[J]. Bioresource Technology, 2019, 273: 136-143. DOI:10.1016/j.biortech.2018.10.056. [21]CHEN X C, CHEN G C, CHEN L G, et al. Adsorption of copper and zinc by biochars produced from pyrolys of hardwood and corn straw in aqueous solution[J]. Bioresource Technology, 2011, 102(19): 8877-8884. DOI:10.1016/j.biortech.2011.06.078. [22]ZHANG W, SONG J Y, HE Q L, et al. Novel pectin based composite hydrogel derived from grapefruit peel for enhanced Cu(II) removal[J]. Journal of Hazardous Materials, 2020, 384: 121445. DOI:10.1016/j.jhazmat.2019.121445. [23]周瑾琨, 尹志慧, 赵玮. 玉米皮纤维素提取工艺优化及结构表征[J]. 食品工业科技, 2019, 40(5): 207-212. DOI:10.13386/j.issn1002-0306.2019.05.034. [24]LIU H K, XU F, XIE Y L, et al. Effect of modified coconut shell biochar on availability of heavy metals and biochemical characteristics of soil in multiple heavy metals contaminated soil[J]. Science of the Total Environment, 2018, 645: 702-709. DOI:10.1016/j.scitotenv.2018.07.115. [25]胡学玉, 陈窈君, 张沙沙, 等. 磁性玉米秸秆生物炭对水体中Cd的去除作用及回收利用[J]. 农业工程学报, 2018, 34(19): 208-218. DOI:10.11975/j.issn.1002-6819.2018.19.027. [26]JUNG K W, LEE S Y, LEE Y J. Facile one-pot hydrothermal synthesis of cubic spinel-type manganese ferrite/biochar composites for environmental remediation of heavy metals from aqueous solutions[J]. Bioresource Technology, 2018, 261: 1-9. DOI:10.1016/j.biortech.2018.04.003. [27]REGUYAL F, SARMAH A K. Site energy distribution analysis and influence of Fe3O4 nanoparticles on sulfamethoxazole sorption in aqueous solution by magnetic pine sawdust biochar[J]. Environmental Pollution, 2018, 233: 510-519. DOI:10.1016/j.envpol.2017.09.076. [28]AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: a review[J]. Chemosphere, 2014, 99: 19-33. DOI:10.1016/j.chemosphere.2013.10.071. [29]SUN J K, LIAN F, LIU Z Q, et al. Biochars derived from various crop straws: characterization and Cd(II) removal potential[J]. Ecotoxicology and Environmental Safety, 2014, 106: 226-231. DOI:10.1016/j.ecoenv.2014.04.042. [30]ZHANG F, WANG X, YIN D X. et al. Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth(Eichornia crassipes)[J]. Journal of Environmental Management, 2015, 153: 68-73. DOI:10.1016/j.jenvman.2015.01.043. [31]KIM W K, SHIM T, KIM Y S, et al. Characterization of cadmium removal from aqueous solutions by biochar produced from a giant Miscanthus at different pyrolytic temperatures[J]. Bioresource Technology, 2013, 138: 266-270. DOI:10.1016/j.biortech.2013.03.186. [32]GONG Y P, NI Z Y, XIONG Z Z, et al. Phosphate and ammonium adsorption of the modified biochar based on Phragmites australis after phytoremediation[J]. Environmental Science and Pollution Research, 2017, 24(9): 8326-8335. DOI:10.1007/s11356-017-8499-2. [33]鲁秀国, 武今巾, 过依婷. 生物炭修复重金属污染土壤的研究进展[J]. 应用化工, 2019, 48(5): 1172-1177. DOI:10.16581/j.cnki.issn1671-3206.20190311.028. |
[1] | 王娜娜, 张翔. PAN基弱碱性离子交换纤维对Zn2+吸附性能研究[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 86-94. |
[2] | 林海蛟, 张继福, 张云, 胡云峰. 基于大孔吸附树脂先交联后吸附法固定化脂肪酶[J]. 广西师范大学学报(自然科学版), 2020, 38(4): 100-108. |
[3] | 肖咪云, 孙孟龙, 阮楚晋, 陈寿昆, 刘裕华, 陆祖军. 生防细菌2016NX1对病原真菌的抑制及发酵条件优化[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 168-178. |
[4] | 冯修, 马楠楠, 职红涛, 韩双乔, 张翔. 重金属捕集剂UDTC对低浓度镉废水的处理研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 63-67. |
[5] | 吴娟,邹华,梅平. 羧酸盐型Gemini表面活性剂的表面性能研究[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 78-86. |
[6] | 秦芳, 蒋钦凤, 王婷, 王玉荣, 冯吉庆, 陈金毅. Mg/Al水滑石和Zn/Al水滑石对微囊藻的去除性能研究[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 115-121. |
[7] | 董金超, 温桂清, 刘庆业, 梁爱惠, 蒋治良. 适配体修饰纳米金催化共振瑞利散射光谱法测定血红素[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 191-196. |
[8] | 石贵玉, 宜丽娜, 梁超红, 李明霞. 硒对镉胁迫下罗汉果组培苗生理生化特性的影响[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 60-64. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |