广西师范大学学报(自然科学版) ›› 2021, Vol. 39 ›› Issue (3): 92-101.doi: 10.16088/j.issn.1001-6600.2020030904

• • 上一篇    下一篇

Ru/ZrO2催化剂催化氨硼烷水解产氢研究

孙海杰1, 刘欣改1, 陈志浩2*, 陈凌霞1*, 张路1, 梅洋洋1   

  1. 1.郑州师范学院 化学化工学院, 河南 郑州 450044;
    2.中国烟草总公司郑州烟草研究院, 河南 郑州 450001
  • 收稿日期:2020-03-09 修回日期:2020-07-23 发布日期:2021-05-13
  • 通讯作者: 陈凌霞(1968—),女,河南郑州人,郑州师范学院教授,博士。E-mail: clingxia@vip.163.com。 陈志浩(1986—),男,河南郑州人,中国烟草总公司郑州烟草研究院工程师,博士。E-mail: chenzh@ztir.com.cn
  • 基金资助:
    国家自然科学基金(21908203); 国家级大学生创新创业训练计划项目(201912949002); 河南省科技攻关项目(192102210139); 河南省高等学校青年骨干教师培养计划(2019GGJS252); 河南省高等学校重点科研项目(18A150018); 郑州师范学院环境催化科研创新团队项目(702010)

Performance of Ru/ZrO2 Catalysts for Hydrogen Generation from Catalytic Hydrolysis of Ammonia Borane

SUN Haijie1, LIU Xingai1, CHEN Zhihao2*, CHEN Lingxia1*, ZHANG Lu1, MEI Yangyang1   

  1. 1. School of Chemistry and Chemical Engineering, Zhengzhou Normal University, Zhengzhou Henan 450044, China;
    2. Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou Henan 450001, China
  • Received:2020-03-09 Revised:2020-07-23 Published:2021-05-13

摘要: 采用浸渍-化学还原法制备了Ru/ZrO2催化剂,并考察了钌负载量、硼氢化钠的用量、还原温度以及反应条件对催化剂Ru/ZrO2催化BH3NH3水解产氢的影响。结果表明,在钌的负载量为0.4%,钌与还原剂硼氢化钠的物质的量比为1∶1.6,还原温度为303 K时,Ru微晶尺寸为3.2 nm,Ru/ZrO2催化剂催化BH3NH3水解产氢的转化频率TOF(turn over frequency)为38.4 mol/mol(Ru)·min。搅拌转速为450 r/min时,外扩散限制消除,产氢速率最大;产氢速率与催化剂用量成正比,氨硼烷水解产氢反应由催化剂界面反应控制;随着反应温度的升高,氨硼烷产氢速率系数增大,副产物偏硼酸钠越易从催化剂表面脱附,产氢速率越大。反应动力学计算表明Ru/ZrO2催化剂催化BH3NH3水解产氢速率与氨硼烷浓度无关,活化能为66 kJ/mol。

关键词: 钌, 二氧化锆, 催化剂, 氨硼烷, 产氢

Abstract: ZrO2 supported Ru catalysts were synthesized with an impregnation-chemical reduction method using NaBH4 as the reducing agent. The prepared catalysts were evaluated for the hydrogen generation via catalytic hydrolysis of BH3NH3. Effect of catalytic activity was investigated by varying the impregnated Ru loading, amount of reducing agent, reduction temperature as well as the reaction conditions. It was found that the TOF (Turnover Frequency) of 38.4 mol/mol(Ru)·min was achieved by adjusting Ru loading to 0.4 at 303 K of reaction temperature, while the molar ratio of Ru to NaBH4 was 1:1.6. The Ru particle size of 3.2 nm was observed. Moreover, when the stirring speed was 450 r/min, external diffusion could be eliminated, leading to the highest reaction rate towards hydrogen generation. In addition, catalytic activity increased with enhancing the amount of used catalyst, indicating that catalytic hydrolysis of BH3NH3 towards hydrogen production was controlled by the interfacial reaction over the catalyst surface. Furthermore, with the reaction temperature increasing, it gets more suitable for the desorption of NaBO2, the side product of hydrolysis of BH3NH3, from the catalyst surface. This results in the enhancement of the reaction rate towards hydrogen formation. According to the kinetic calculation, it suggests that the reaction rate of hydrolysis of BH3NH3 towards hydrogen generation over Ru/ZrO2 is irrelevant to the concentration of BH3NH3. The activation energy is 66 kJ/mol.

Key words: Ru, ZrO2, catalyst, ammonia borane, hydrogen generation

中图分类号: 

  • TQ116
[1]杨兰, 罗威, 程功臻. 氨硼烷水解制氢的研究进展[J]. 大学化学, 2014, 29(6): 1-10. DOI:10.3969/j.issn.1000-8438.2014.06.001.
[2]李燕,邓雨真,俞晶铃, 等. 氨硼烷分解制氢及其再生的研究进展[J]. 化工进展,2019,38(12): 5330-5338. DOI:10.16085/j.issn.1000-6613.2019-0482.
[3]李历红,方志刚,赵振宁,等. 团簇Ni3CoP催化析氢活性研究[J]. 广西师范大学学学报(自然科学版),2019,37(1): 165-172. DOI:10.16088/j.issn.1001-6600.2019.01.019.
[4]孙海杰,陈凌霞,张玉凤,等. 钴-硼/二氧化锆催化剂催化硼氢化钠水解制氢研究[J]. 无机盐工业,2019,51(3): 72-76.
[5]孙海杰,黄振旭,王雅苹,等. 非晶态合金Ru-B/ZrO2催化剂催化硼氢化钠水解制氢性能的研究[J]. 化工新型材料,2018,46(1): 102-105.
[6]孙海杰,陈凌霞,黄振旭,等. 第四周期过渡金属催化硼氢化钠水解制氢研究[J]. 无机盐工业,2017,49(5): 14-17.
[7]李慧珍,王芃远,陈学年. 氨硼烷:一种高性能化学储氢材料[J]. 科学通报,2014,59(19): 1823-1837. DOI:10.1360/972013-1221.
[8]张帅,王斯瑶,姜召,等. 静电纺丝技术在氨硼烷水解脱氢催化剂制备中的应用[J]. 化工进展,2019,38(7): 3194-3206. DOI:10.16085/j.issn.1000-6613.2018-1606.
[9]马建丽,张晓霞,曹海燕,等. 氨硼烷热分解放氢的研究进展[J]. 化工新型材料,2016,44(5): 34-36.
[10]SONG Q, WANG W D, HU X W, et al. Ru nanoclusters confined in porous organic cages for catalytic hydrolysis of ammonia borane and tandem hydrogenation reaction[J]. Nanoscale, 2019, 11(44): 21513-21521. DOI:10.1039/C9NR08483E.
[11]ZHANG J, DONG Y N, LIU Q X, et al. Hierarchically alloyed Pd-Cu microarchitecture with tunable shapes: morphological engineering, and catalysis for hydrogen evolution reaction of ammonia borane[J]. International Journal of Hydrogen Energy, 2019, 44(57): 30226-30236. DOI:10.1016/j.ijhydene.2019.09.213.
[12]FU W Z, HAN C, LI D L, et al. Polyoxometalates-engineered hydrogen generation rate and durability of Pt/CNT catalysts from ammonia borane[J]. Journal of Energy Chemistry, 2020, 41(2):142-148. DOI:10.1016/j.jechem.2019.05.014.
[13]RAKAP M. PVP-stabilized Ru-Rh nanoparticles as highly efficient catalysts forhydrogen generation from hydrolysis of ammonia borane[J]. Journal of Alloys and Compounds, 2015, 649: 1025-1030. DOI:10.1016/j.jallcom.2015.07.249.
[14]CAO N, HU K, LUO W, et al. RuCu nanoparticles supported on graphene: a highly efficient catalyst for hydrolysis of ammonia borane[J]. Journal of Alloys and Compounds, 2014, 590:241-246. DOI:10.1016/j.jallcom.2013.12.134.
[15]FAN G Y, LIU Q Q, TANG D M et al. Nanodiamond supported Ru nanoparticles as an effective catalyst for hydrogen evolution from hydrolysis of ammonia borane[J]. International Journal of Hydrogen Energy, 2016, 41(3): 1542-1549. DOI:10.1016/j.ijhydene.2015.10.083.
[16]DU C, AO Q, CAO N, et al. Facile synthesis of monodisperse ruthenium nanoparticles supported on graphene for hydrogen generation from hydrolysis of ammonia borane[J]. International Journal of Hydrogen Energy, 2015, 40(18): 6180-6187. DOI:10.1016/j.ijhydene.2015.03.070.
[17]AKBAYRAK S, ÓZKAR S. Ruthenium(0) nanoparticles supported on multiwalled carbon nanotube as highly active catalyst for hydrogen generation from ammonia-borane[J]. ACS Applied Materials & Interfaces, 2012, 4(11): 6302-6310. DOI:10.1021/am.3019146.
[18]YANG L, LUO W, CHENG G Z. Graphene-supported Ag-based core-shell nanoparticles for hydrogen generation in hydrolysis of ammonia borane and methylamine borane[J]. ACS Applied Materials & Interfaces, 2013, 5(16): 8231-8240. DOI:10.1021/am402373p.
[19]RAKAP M, ÓZKAR S. Hydroxyapatite-supported palladium(0)nanoclusters as effective and reusable catalyst for hydrogen generation from the hydrolysis of ammonia-borane[J]. International Journal of Hydrogen Energy, 2011, 36(12): 7019-7027. DOI:10.1016/j.ijhydene.2011.03.017
[20]RAKAP M, ÓZKAR S. Zeolite confined palladium(0) nanoclusters as effective and reusable catalyst for hydrogen generation from the hydrolysis of ammonia-borane[J]. International Journal of Hydrogen Energy, 2010, 35(3): 1305-1312. DOI:10.1016/j.ijhydene.2009.11.056.
[21]CHANDRA M, XU Q. Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts[J]. Journal of Power Sources, 2007, 168(1): 135-142. DOI:10.1016/j.jpowsour.2007.03.015.
[22]AKBAYRAK S, TANYILDIZI S, MORKAN I, et al. Ruthenium(0) nanoparticles supported on nanotitania as highly active and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane[J]. International Journal of Hydrogen Energy, 2014, 39(18): 9628-9637. DOI:10.1016/j.ijhydene.2014.04.091.
[23]孙海杰,陈凌霞,陈秀丽,等. ZrO2织构性质对Ru-B/ZrO2催化剂的结构及其苯选择加氢性能的影响[J]. 石油化工,2015,44(9): 1066-1070. DOI:10.3969/j.issn.1000-8144.2015.09.007.
[24]刘仲毅,孙海杰,王东斌,等. 纳米ZrO2作分散剂的Ru-Zn催化剂上苯选择加氢制环己烯[J]. 催化学报,2010,31(2): 150-152. DOI:10.3724/SP.J.1088.2010.91039.
[25]陈健民,卢章辉,熊丽华. Ru/Ce(OH)CO3纳米复合材料催化氨硼烷水解产氢[J]. 无机化学学报,2016,32(10): 1816-1824. DOI:10.11862/CJIC.2016.228.
[26]邵阳阳,靳惠明,俞亮,等. Mo 掺杂 Co-B 非晶态合金的制备及催化硼氢化钠水解制氢性能[J]. 材料导报,2020,34(1): 2063-2066. DOI:10.11896/cldb.18090130.
[27]孙海杰,陈凌霞,黄振旭,等. Ru-Zn催化剂在苯选择加氢制环己烯反应中的粒径效应[J]. 高等学校化学学报,2015,36(10): 1969-1976. DOI:10.7503/cjcu20150288.
[28]RACHIERO G P, DEMIRCI U B, MIELE P. Bimetallic RuCo and RuCu catalysts supported on γ-Al2O3. A comparative study of their activity in hydrolysis of ammonia-borane[J]. International Journal of Hydrogen Energy, 2011, 36(12): 7051-7065. DOI:10.1016/j.ijhydene.2011.03.009.
[29]朱玉玲,郑修成,刘蒲. 磁性花生壳负载钯催化剂的制备及催化氨硼烷释氢性能[J]. 信阳师范学院学报(自然科学版),2019,32(2): 276-280. DOI:10.3969/j.issn.1003-0972.2019.02.018.
[30]BASU S, BROCKMAN A, GAGARE P, et al. Chemical kinetics of Ru-catalyzed ammonia borane hydrolysis[J]. Journal of Power Sources, 2009, 188(1): 238-243. DOI:10.1016/j.jpowsour.2008.11.085.
[31]孙海杰,陈秀丽,黄振旭,等. NaOH浓度对苯选择加氢制环己烯Ru-Zn催化剂性能的影响[J]. 化工学报,2016,67(4): 1324-1332. DOI:10.11949/j.issn.0438-1157.20151370.
[32]HU S C, CHEN Y W. Partial hydrogenation of benzene to cyclohexene on ruthenium catalysts supported on La2O3-ZnO binary oxides[J]. Industrial & Engineering Chemistry Research, 1997, 36(12): 5153-5159.
[33]DONG H, YANG H X, AI X P, et al. Hydrogen production from catalytic hydrolysis of sodium borohydride solution using nickel boride catalyst[J]. International Journal of Hydrogen Energy, 2003, 28(10): 1095-1100. DOI:10.1016/S0360-3199(02)00235-5.
[34]RACHIERO G P, DEMIRCI U B, MIELE P. Facile synthesis by polyol method of a ruthenium catalyst supported on γ-Al2O3 for hydrolytic dehydrogenation of ammonia borane[J]. Catalysis Today, 2011, 170(1): 85-92. DOI:10.1016/j.cattod.2011.01.040
[35]CAN H, METIN Ó. A facile synthesis of nearly monodisperse ruthenium nanoparticles and their catalysis in the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage[J]. Applied Catalysis B: Environmental, 2012, 125: 304-310. DOI:10.1016/j.apcatb.2012.05.048.
[36]TONBUL Y, AKBAYRAK S, ÓZKAR S.Palladium(0) nanoparticles supported on ceria: highly active and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane[J].International Journal of Hydrogen Energy, 2016, 41(26): 11154-11162. DOI:10.1016/j.ijhydene.2016.04.058.
[37]KILIÇ B,ŞENCANLI S,METIN Ó. Hydrolytic dehydrogenation of ammonia borane catalyzed by reduced graphene oxide supported monodisperse palladium nanoparticles: high activity and detailed reaction kinetics[J].Journal of Molecular Catalysis A: Chemistry, 2012, 361/362: 104-110. DOI:10.1016/j.molcata.2012.05.008.
[38]RAKAP M, ÓZKAR S.Hydroxyapatite-supported palladium(0)nanoclusters as effective and reusable catalyst for hydrogen generation from the hydrolysis of ammonia-borane[J].International Journal of Hydrogen Energy, 2011, 36(12): 7019-7027. DOI:10.1016/j.ijhydene.2011.03.017.
[39]XI P X, CHEN F J, XIE G Q, et al.Surfactant free RGO/Pd nanocomposites as highly active heterogeneous catalysts for the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage[J].Nanoscale, 2012, 4(18): 5597-5601. DOI:10.1039/c2nr31010d.
[40]孙海杰,刘欣改,陈志浩,等. 二氧化硅负载钌催化剂催化氨硼烷水解产氢研究[J]. 无机盐工业,2020,52(5): 81-85. DOI:10.11962/1006-4990.2019-0398.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈梦华,刘敏,王宁. Weizscker-Skyrme核质量公式的理论预言能力研究[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 1 -8 .
[2] 王 意,邹艳丽,李 可,黄 李. 分布式电站入网方式对电网同步的影响[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 24 -31 .
[3] 韦宏金,周喜乐,商 辉,严岳鸿. 广西蕨类植物新记录(Ⅲ)[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 98 -105 .
[4] 包金萍, 宇克莉, 李咏兰, 郑连斌. 临高人的瘦体质量指数与脂肪质量指数[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 142 -147 .
[5] 刘庆业, 汪花, 黄丹华, 何世赫, 李娇, 罗钧恒, 张杏辉, 温桂清, 梁爱惠, 蒋治良. 碳纳米微粒共振瑞利散射能量转移测定铬(Ⅵ)[J]. 广西师范大学学报(自然科学版), 2016, 34(1): 128 -133 .
[6] 许伦辉, 王晴, 朱群强, 吴赟. 基于碳足迹的城市客运交通优化研究[J]. 广西师范大学学报(自然科学版), 2015, 33(4): 1 -5 .
[7] 李珊珊, 费铭岗. Dunkl-Clifford分析框架下的Hermite多项式[J]. 广西师范大学学报(自然科学版), 2015, 33(4): 73 -80 .
[8] 梁士楚, 石贵玉, 韦宇静, 李明霞. 桉树抗逆性生理指标的季节变化[J]. 广西师范大学学报(自然科学版), 2014, 32(3): 116 -120 .
[9] 邓金虹, 赵俊玲. 非回归点集中的SS混沌集[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 40 -44 .
[10] 宋婷, 谢显中, 胡小峰. 分簇频谱检测报告信道的信噪比墙及性能分析[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 169 -176 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发