|
广西师范大学学报(自然科学版) ›› 2021, Vol. 39 ›› Issue (3): 92-101.doi: 10.16088/j.issn.1001-6600.2020030904
孙海杰1, 刘欣改1, 陈志浩2*, 陈凌霞1*, 张路1, 梅洋洋1
SUN Haijie1, LIU Xingai1, CHEN Zhihao2*, CHEN Lingxia1*, ZHANG Lu1, MEI Yangyang1
摘要: 采用浸渍-化学还原法制备了Ru/ZrO2催化剂,并考察了钌负载量、硼氢化钠的用量、还原温度以及反应条件对催化剂Ru/ZrO2催化BH3NH3水解产氢的影响。结果表明,在钌的负载量为0.4%,钌与还原剂硼氢化钠的物质的量比为1∶1.6,还原温度为303 K时,Ru微晶尺寸为3.2 nm,Ru/ZrO2催化剂催化BH3NH3水解产氢的转化频率TOF(turn over frequency)为38.4 mol/mol(Ru)·min。搅拌转速为450 r/min时,外扩散限制消除,产氢速率最大;产氢速率与催化剂用量成正比,氨硼烷水解产氢反应由催化剂界面反应控制;随着反应温度的升高,氨硼烷产氢速率系数增大,副产物偏硼酸钠越易从催化剂表面脱附,产氢速率越大。反应动力学计算表明Ru/ZrO2催化剂催化BH3NH3水解产氢速率与氨硼烷浓度无关,活化能为66 kJ/mol。
中图分类号:
[1]杨兰, 罗威, 程功臻. 氨硼烷水解制氢的研究进展[J]. 大学化学, 2014, 29(6): 1-10. DOI:10.3969/j.issn.1000-8438.2014.06.001. [2]李燕,邓雨真,俞晶铃, 等. 氨硼烷分解制氢及其再生的研究进展[J]. 化工进展,2019,38(12): 5330-5338. DOI:10.16085/j.issn.1000-6613.2019-0482. [3]李历红,方志刚,赵振宁,等. 团簇Ni3CoP催化析氢活性研究[J]. 广西师范大学学学报(自然科学版),2019,37(1): 165-172. DOI:10.16088/j.issn.1001-6600.2019.01.019. [4]孙海杰,陈凌霞,张玉凤,等. 钴-硼/二氧化锆催化剂催化硼氢化钠水解制氢研究[J]. 无机盐工业,2019,51(3): 72-76. [5]孙海杰,黄振旭,王雅苹,等. 非晶态合金Ru-B/ZrO2催化剂催化硼氢化钠水解制氢性能的研究[J]. 化工新型材料,2018,46(1): 102-105. [6]孙海杰,陈凌霞,黄振旭,等. 第四周期过渡金属催化硼氢化钠水解制氢研究[J]. 无机盐工业,2017,49(5): 14-17. [7]李慧珍,王芃远,陈学年. 氨硼烷:一种高性能化学储氢材料[J]. 科学通报,2014,59(19): 1823-1837. DOI:10.1360/972013-1221. [8]张帅,王斯瑶,姜召,等. 静电纺丝技术在氨硼烷水解脱氢催化剂制备中的应用[J]. 化工进展,2019,38(7): 3194-3206. DOI:10.16085/j.issn.1000-6613.2018-1606. [9]马建丽,张晓霞,曹海燕,等. 氨硼烷热分解放氢的研究进展[J]. 化工新型材料,2016,44(5): 34-36. [10]SONG Q, WANG W D, HU X W, et al. Ru nanoclusters confined in porous organic cages for catalytic hydrolysis of ammonia borane and tandem hydrogenation reaction[J]. Nanoscale, 2019, 11(44): 21513-21521. DOI:10.1039/C9NR08483E. [11]ZHANG J, DONG Y N, LIU Q X, et al. Hierarchically alloyed Pd-Cu microarchitecture with tunable shapes: morphological engineering, and catalysis for hydrogen evolution reaction of ammonia borane[J]. International Journal of Hydrogen Energy, 2019, 44(57): 30226-30236. DOI:10.1016/j.ijhydene.2019.09.213. [12]FU W Z, HAN C, LI D L, et al. Polyoxometalates-engineered hydrogen generation rate and durability of Pt/CNT catalysts from ammonia borane[J]. Journal of Energy Chemistry, 2020, 41(2):142-148. DOI:10.1016/j.jechem.2019.05.014. [13]RAKAP M. PVP-stabilized Ru-Rh nanoparticles as highly efficient catalysts forhydrogen generation from hydrolysis of ammonia borane[J]. Journal of Alloys and Compounds, 2015, 649: 1025-1030. DOI:10.1016/j.jallcom.2015.07.249. [14]CAO N, HU K, LUO W, et al. RuCu nanoparticles supported on graphene: a highly efficient catalyst for hydrolysis of ammonia borane[J]. Journal of Alloys and Compounds, 2014, 590:241-246. DOI:10.1016/j.jallcom.2013.12.134. [15]FAN G Y, LIU Q Q, TANG D M et al. Nanodiamond supported Ru nanoparticles as an effective catalyst for hydrogen evolution from hydrolysis of ammonia borane[J]. International Journal of Hydrogen Energy, 2016, 41(3): 1542-1549. DOI:10.1016/j.ijhydene.2015.10.083. [16]DU C, AO Q, CAO N, et al. Facile synthesis of monodisperse ruthenium nanoparticles supported on graphene for hydrogen generation from hydrolysis of ammonia borane[J]. International Journal of Hydrogen Energy, 2015, 40(18): 6180-6187. DOI:10.1016/j.ijhydene.2015.03.070. [17]AKBAYRAK S, ÓZKAR S. Ruthenium(0) nanoparticles supported on multiwalled carbon nanotube as highly active catalyst for hydrogen generation from ammonia-borane[J]. ACS Applied Materials & Interfaces, 2012, 4(11): 6302-6310. DOI:10.1021/am.3019146. [18]YANG L, LUO W, CHENG G Z. Graphene-supported Ag-based core-shell nanoparticles for hydrogen generation in hydrolysis of ammonia borane and methylamine borane[J]. ACS Applied Materials & Interfaces, 2013, 5(16): 8231-8240. DOI:10.1021/am402373p. [19]RAKAP M, ÓZKAR S. Hydroxyapatite-supported palladium(0)nanoclusters as effective and reusable catalyst for hydrogen generation from the hydrolysis of ammonia-borane[J]. International Journal of Hydrogen Energy, 2011, 36(12): 7019-7027. DOI:10.1016/j.ijhydene.2011.03.017 [20]RAKAP M, ÓZKAR S. Zeolite confined palladium(0) nanoclusters as effective and reusable catalyst for hydrogen generation from the hydrolysis of ammonia-borane[J]. International Journal of Hydrogen Energy, 2010, 35(3): 1305-1312. DOI:10.1016/j.ijhydene.2009.11.056. [21]CHANDRA M, XU Q. Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts[J]. Journal of Power Sources, 2007, 168(1): 135-142. DOI:10.1016/j.jpowsour.2007.03.015. [22]AKBAYRAK S, TANYILDIZI S, MORKAN I, et al. Ruthenium(0) nanoparticles supported on nanotitania as highly active and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane[J]. International Journal of Hydrogen Energy, 2014, 39(18): 9628-9637. DOI:10.1016/j.ijhydene.2014.04.091. [23]孙海杰,陈凌霞,陈秀丽,等. ZrO2织构性质对Ru-B/ZrO2催化剂的结构及其苯选择加氢性能的影响[J]. 石油化工,2015,44(9): 1066-1070. DOI:10.3969/j.issn.1000-8144.2015.09.007. [24]刘仲毅,孙海杰,王东斌,等. 纳米ZrO2作分散剂的Ru-Zn催化剂上苯选择加氢制环己烯[J]. 催化学报,2010,31(2): 150-152. DOI:10.3724/SP.J.1088.2010.91039. [25]陈健民,卢章辉,熊丽华. Ru/Ce(OH)CO3纳米复合材料催化氨硼烷水解产氢[J]. 无机化学学报,2016,32(10): 1816-1824. DOI:10.11862/CJIC.2016.228. [26]邵阳阳,靳惠明,俞亮,等. Mo 掺杂 Co-B 非晶态合金的制备及催化硼氢化钠水解制氢性能[J]. 材料导报,2020,34(1): 2063-2066. DOI:10.11896/cldb.18090130. [27]孙海杰,陈凌霞,黄振旭,等. Ru-Zn催化剂在苯选择加氢制环己烯反应中的粒径效应[J]. 高等学校化学学报,2015,36(10): 1969-1976. DOI:10.7503/cjcu20150288. [28]RACHIERO G P, DEMIRCI U B, MIELE P. Bimetallic RuCo and RuCu catalysts supported on γ-Al2O3. A comparative study of their activity in hydrolysis of ammonia-borane[J]. International Journal of Hydrogen Energy, 2011, 36(12): 7051-7065. DOI:10.1016/j.ijhydene.2011.03.009. [29]朱玉玲,郑修成,刘蒲. 磁性花生壳负载钯催化剂的制备及催化氨硼烷释氢性能[J]. 信阳师范学院学报(自然科学版),2019,32(2): 276-280. DOI:10.3969/j.issn.1003-0972.2019.02.018. [30]BASU S, BROCKMAN A, GAGARE P, et al. Chemical kinetics of Ru-catalyzed ammonia borane hydrolysis[J]. Journal of Power Sources, 2009, 188(1): 238-243. DOI:10.1016/j.jpowsour.2008.11.085. [31]孙海杰,陈秀丽,黄振旭,等. NaOH浓度对苯选择加氢制环己烯Ru-Zn催化剂性能的影响[J]. 化工学报,2016,67(4): 1324-1332. DOI:10.11949/j.issn.0438-1157.20151370. [32]HU S C, CHEN Y W. Partial hydrogenation of benzene to cyclohexene on ruthenium catalysts supported on La2O3-ZnO binary oxides[J]. Industrial & Engineering Chemistry Research, 1997, 36(12): 5153-5159. [33]DONG H, YANG H X, AI X P, et al. Hydrogen production from catalytic hydrolysis of sodium borohydride solution using nickel boride catalyst[J]. International Journal of Hydrogen Energy, 2003, 28(10): 1095-1100. DOI:10.1016/S0360-3199(02)00235-5. [34]RACHIERO G P, DEMIRCI U B, MIELE P. Facile synthesis by polyol method of a ruthenium catalyst supported on γ-Al2O3 for hydrolytic dehydrogenation of ammonia borane[J]. Catalysis Today, 2011, 170(1): 85-92. DOI:10.1016/j.cattod.2011.01.040 [35]CAN H, METIN Ó. A facile synthesis of nearly monodisperse ruthenium nanoparticles and their catalysis in the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage[J]. Applied Catalysis B: Environmental, 2012, 125: 304-310. DOI:10.1016/j.apcatb.2012.05.048. [36]TONBUL Y, AKBAYRAK S, ÓZKAR S.Palladium(0) nanoparticles supported on ceria: highly active and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane[J].International Journal of Hydrogen Energy, 2016, 41(26): 11154-11162. DOI:10.1016/j.ijhydene.2016.04.058. [37]KILIÇ B,ŞENCANLI S,METIN Ó. Hydrolytic dehydrogenation of ammonia borane catalyzed by reduced graphene oxide supported monodisperse palladium nanoparticles: high activity and detailed reaction kinetics[J].Journal of Molecular Catalysis A: Chemistry, 2012, 361/362: 104-110. DOI:10.1016/j.molcata.2012.05.008. [38]RAKAP M, ÓZKAR S.Hydroxyapatite-supported palladium(0)nanoclusters as effective and reusable catalyst for hydrogen generation from the hydrolysis of ammonia-borane[J].International Journal of Hydrogen Energy, 2011, 36(12): 7019-7027. DOI:10.1016/j.ijhydene.2011.03.017. [39]XI P X, CHEN F J, XIE G Q, et al.Surfactant free RGO/Pd nanocomposites as highly active heterogeneous catalysts for the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage[J].Nanoscale, 2012, 4(18): 5597-5601. DOI:10.1039/c2nr31010d. [40]孙海杰,刘欣改,陈志浩,等. 二氧化硅负载钌催化剂催化氨硼烷水解产氢研究[J]. 无机盐工业,2020,52(5): 81-85. DOI:10.11962/1006-4990.2019-0398. |
No related articles found! |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |